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1. Introduction

This is the final project report on the research program entitled "Elec-

tromagnetic Interactions in High-Speed Integrated Electronic Circuits" sup-

ported by the Office of Naval Research under ONR Contract Number N00014-86-K-

0609. It reports research conducted during the contract period of June 1,

1986 to December 31, 1988.

The objective of this research was to investigate electromagnetic inter-

actions among components within microstrip-based circuits fabricated adjacent

to the layered surround characteristic of a high-speed MMIC environment. EM

fields maintained by currents immersed in layered dielectric/ferrimagnetic

media are exploited to study the complete propagation-mode spectrum of micro-

strip lines and their interactions with the coupled microstrip devices which

they interconnect. Seven related research topics were investigated in connec-

tion with this program, and they are described in Section 4 of this report.

The seven scientific collaborators who contributed to the research pro-

gram are identified in Section 2 of this report. Section 3 details biblio-

graphical information on the eighteen research papers which were precipitated

by the investigations supported by this contract. Finally, Section 4 includes

a technical description of the project and results; the seven sub-sections

there provide details of research on the major topics investigated in connec-

tion with the program. Extensive reference is made to sciectific papers from

Section 3, copies of which are included in Section 4.
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2. Scientific Collaborators on Project

The following individuals have participated in, and contributed to, the

research program during the contract period.

Faculty:

1. Dennis P. Nyquist, Professor of Electrical Engineering, Principal

Investigator.

2. Byron C. Drachman, Professor of Mathematics, Co-Principal

Investigator.

Doctoral-Level Students:

1. Michael J. Cloud, Graduate Assistant, Electrical Engineering Ph.D.

Degree awarded in December 1987.

2. Yi Yuan, Graduate Assistant, Electrical Engineering Ph.D. Degree

expected in June 1990.

Master's-Level Students:

1. Eric W. Blumbergs, Graduate Assistant, Electrical Engineering M.S.

Degree expected in June 1989.

Undergraduate Students:

.l.. Paul F. Havala, Undergraduate Assistant, Electrical Engineering B.S.

Degree awarded in June 1987; presently completing his M.S. Degree.

2. Darius Adamozyk, Undergraduate Assistant, Electrical Engineering B.S.

Degree awarded in June 1988.
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3. Contributed Papers Arising from Research Program

The following eighteen scientific papers, reporting results of this re-

search, were produced during the Contract period.

(1] B. C. Drachman, D. P. Nyquist, and M. J. Cloud, "Accurate evaluation of
Sommerfeld integrals using the fast Fourier transform," Nat. Radio
Science (USNC/URSI) Meeting, University of Colorado, Boulder, CO, digest
p. 73, Jan. 1987.

[21 J. S. Bagby and D. P. Nyquist, "Radiative and surface-wave losses in
microstrip transmission lines," Nat. Radio Science (USNC/URSI) Meeting,
University of Colorado, Boulder, CO, digest p. 226, Jan. 1987.

[3] J. S. Bagby and D. P. Nyquist, "Dyadic Green's functions for integrated
electronic and optical circuits," IEEE MTT-S Trans. 35, 2, 206-210 (Feb.
1987).

[41 M. S. Viola, D. P. Nyquist, and B. C. Drachman, "On the Sommerfeld inte-
gral representation of the electric dyadic Green's function for layered
media," URSI Radio Science Meeting, Virginia Tech, Blacksburg, VA, di-
gest p. 278, June 1987.

[51 M. J. Cloud and D. P. Nyquist, "Complete propagation-mode spectrum of
microstrip guiding structures," URSI Radio Science Meeting, Virginia
Tech, Blacksburg, VA, digest p. 120, June 1987.

[6] E. W. Blumbergs, D. P. Nyquist, and P. F. Havala, "Integral equation
formulation for a circular patch antenna in a layered environment," URSI
Radio Science Meeting, Virginia Tech, Blacksburg, VA, digest p. 149,
June 1987.

[7] M. J. Cloud, "Electromagnetic Interactions in Integrated Electronic
Circuits," Ph.D. Dissertation, Department of Electrical Engineering,
Michigan State University, East Lansing, MI, December 1987.

[81 D. P. Nyquist, M. S. Viola, M. J. Cloud, and M. Havrilla, "On
Sommerfeld-integral electric field kernels for microstrip-based
circuits," Nat. Radio Science (USNC/URSI) Meeting, University of
Colorado, Boulder, CO, digest p. 112, Jan. 1988.

[9] M. S. Viola and D. P. Nyquist, "An observation on the Sommerfeld inte-
gral representation of the electric dyadic Green's function for layered
media," IEEE MTT-S Trans. 36, 8, 1289-1292 (August 1988).

[10] C. H. Lee, J. S. Bagby, Y. YuAn and D. P. Nyquist, "Entire basis MoM
analysis of coupled microstrip transmission lines," Nat. Radio Science
(USNC/URSI) Meeting, University of Colorado, Boulder, CO, digest p. 179,
Jan. 1989.

[11] Y. Yuan and D. P. Nyquist, "EFIE-based perturbation approximation for
coupled microstrip lines," Nat. Radio Science (USNC/URSI) Meeting, Uni-
versity of Colorado, Boulder, CO, digest p. 180, Jan. 1989.
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[12] B. Drachman, M. Cloud, and D. Nyquist, "Accurate evaluation of
Sommerfeld integrals using the fast Fourier transform," to appear in
IEEE AP-S Trans., April 1988.

[131 Y. Yuan and D. P. Nyquist, "Electric dyadic Green's function for layered
media with dielectric/magnetic contrast," to be presented at 1989 URSI
Nat. Radio Science (USNC/URSI) Meeting, SanJose, CA, June 26-30, 1989.

[141 Y. Yuan, J. Vezmar, G. King and D. P. Nyquist, "Coupled microstrip tran-
smission lines: full-wave perturbation theory and experimental valida-
tion," to be presented at 1989 URSI Radio Science (USNC/URSI) Meeting,
SanJose, CA, June 26-30, 1989.

[15] D. P. Nyquist "Dyadic Green's functions for EM fields in the layered
PC/IC environment--representation, properties, and applications," to be
presented at PIERS (Progress in Electromagnetics Research Symposium),
MIT, Cambridge, Massachusetts, July 1989.

[16] D. P. Nyquist, "Deduction of EM phenomena in microstrip circuits from an
integral-operator description of the system," Proceedings of the URSI
Triennial EM Theory Symposium, Stockholm, Sweden, August 14-17, 1989.

[17] M. J. Cloud and D. P. Nyquist, "A note on the mixed potential represen-
tation of electric fields in layererd media," to appear in IEEE MTT-S
Trans., August 1989.

[18] C. H. Lee, J. S. Bagby, Y. Yuan, and D. P. Nyquist, "Entire-domain basis
MoM analysis of coupled microstrip transmission lines," submitted to
IEEE MTT-S Trans., February 1989.
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4. Technical Description of Project and Results

A technical description of the seven majoi research topics investigated

in connection with the project is included in the corresponding sub-sections

to follow. All bibliographic references are to scientific papers precipitated

by that research, as listed in Section 3. Reproductions of research papers

relevant to each subsection are included following those sections.

4.1 Electromagnetics of layered dielectric/ferrimagnetic media

A major accomplishment during the contract period was the development of

a full-wave theory for the electromagnetics of layered dielectric/ferrimag-

netic media. A dyadic Green's function for the electric field maintained by

electric currents, immersed in a tri-layered substrate/film/cover surround

having general linear, isotropic dielectric and magnetic properties, was ob-

tained. In the special case where the substrate layer becomes perfectly con-

ducting (negative infinite imaginary permittivity), the tri-layered background

becomes that appropriate for the MMIC environment. This formulation and its

results are reported in papers [3,4,9,13,15,171.

The Hertz potential boundary conditions of 131 are generalized in [13,17]

to allow magnetic permeability contrast between the various isotropic, homo-

geneous media layers. A two-dimensional spectral analysis subsequently leads

to the transform-domain Hertz potential maintained by currents immersed in the

tri-layered environment. The space-domain electric field is recovered by in-

verse Fourier transformation, which leads to a Sommerfeld-type integral repre-

sentation for that field. Subsequent complex analysis in the 2-d transform

plane provides for a decomposition of the field into discrete surface-wave and

continuous radiation-mode spectral components. The complete propagation mode

spectrum of the tri-layered environment, into wnich the field of any immersed

currents can be expanded, is consequently identified. The surface-wave con-

tribution arises from poles of implicated spectral-domain reflection and coup-

ling coefficients; those TE/TM poles of the tri-layered media are located by

the solutions to generalized eigenvalue equations which involve the dielectric

and magnetic properties of each layer and the film thickness. A specializa-

tion of the TM eigenvalue equation leads to precisely the recently reported A

surface waves supported by a grounded, lossy planar ferrite slab.

The source-point singularity In the Sommerfeld-integral representation of

the electric Green's dyad for a layered IC environment was studied for the

5



first time in [4,9]. An innate principal volume and associated depolarizing

dyad to properly accomodate that singularity were identified. A new mixed-

potential formulation for the electric field maintained by currents immersed

in the cover layer of the tri-layered IC environment was exposed in [17].

That formulation avoids the source-point singiilarity which arises from certain

derivitives of the corresponding Hertz potential, resulting in Sommerfeld in-

tegral representations which are relatively rapidly convergent.

The electromagnetic analysis of tri-layered substrate/film/cover media

provides the basis for study of electromagnetic interactions in MMIC's. It

provides, through Hertz potential and electric Green's dyads, a concise and

elegant description for EM excitation of such an integrated-circuit environ-

ment, in which no phenomena have been neglected. If the film layer is ferri-

magnetic with moderately high permittivity, new physical phenomena are expect-

ed since the surface-wave regime may couple with important microstrip propag-

ation modes unless the film is very thin. Each of the subsequent research

topics exploits this EM analysis of the tri-layered environment; its conse-

quences and physical implications are consequently investigated in connection

with each topic.
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Dyadic Green's Functions for Integrated Electronic
and Optical Circuits

JONATHAN S. BAGBY. MEMBER. IEEE, AND

DENNIS P. NYQUIST, MEMBER, IEEE

Abstract -Layered structures play an important role in both integrated
microwave circuits and optical integrated circuits. Accurate prediction of
device behavior requires evaluation of fields in the system. An increasingly
used mathematical formulation relies on integral equations; the electric
field in the device is expressed in terms of the device current integrated
into an electric Green's function. Details of the development of the
specialized Green's functions used by various researchers have not ap-
peared in the literature. We present the development of general dyadic
electric Green's functions for layered structures this dyadic formulation
allows extension of previous analyses to cases where currents are arbi-
trarily directed. The electric-field Green's dyads are found in terms of
associated Hertzian potential Green's dyads, developed via Sommerfeld's
classic method. Incidently, boundary conditions for electric Hertzian
potential ae utilized, these boundary conditions, which have been a source

of confusion in the research community, are developed in full generality.
The dyadic forms derived herein ae reducible in special cases to the
Green's functions used by other workers.

I. INTRODUCTION

Layered dielectric structures, such as those depicted in Fig. 1,
play an important role in both integrated electronic circuits and
integrated optical circuits. In integrated electronics, conducting
"devic .s" are affixed to a dielectric film layer which is deposited
over a conducting ground plane. For integrated optical circuits, a
dielectric waveguiding region is typically placed on top of a
dielectric film layer; the film layer is, in turn, deposited on a

Manuscript received July 14. 1986; revised September 6. 1986.
J. S Bagby is with the Department of Electrical Engineering, University of

Texas at Arlington. Arlington, TX 76019.
D P. Nyquist is with the Department of Electrical Engineering and Systems

Science. Michigan State University. East Lansing, MI 48824.
IEEE Log Number 8611631.

0018-9480/87/0200-0206501.00 01987 IEEE
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C"2co've me~dium. C, waveg ,,t"
conductingJ core

,tr y2-t

round.plan ;sutstrat.. , Fig. 2. Multilayered dielectric background structure with source in th la% r

/ 'fl; the primary potential propagates directly from the source to

(a) (b) a field point in the ith layer, whereas the scattered potenual
arrives at a field point after being scattered (reflected or trans-

tegrated optical circuits. mitted) from interfaces between adjacent layers. These potentials

satisfy the following Helmholtz equations:

substrate. In both cases, accurate prediction of device behavior 2 W(,,
requires evaluation of the fields in the system. Il i (1)

Exact formulations for the electric field in terms of differential ) 0

equations [l, [2] are rendered ineffective for these more com- The solution for the primary potential in terms of the impressed
plicated geometries by the inseparability of boundary conditions current is
at the device boundaries, and approximations based on such 1(P)
formulations have been found to neglect important radiative fif(r) -JfGP(FI 7 ') dV' (2)
phenomena [31, [4]. Alternative formulations have been gaining jwf,
favor; these formulations rely on integral equations to describe where Gp(-']p) - exp(- jk, R)/41rR is the free-space Green's
the behavior of the system [4]-18. The electric field in the system function.
is expressed in terms of a current integrated into an electric We solve (1) for the scattered potential by Fourier transforma-
Green's function; boundary conditions are incorporated in their tion on spatial variables tangential to the layer interfaces. Define
full generality in the Green's function. However, details of the the transform pair F(') +- f(X, y), where X is the 2-D transform
development of the Green's functions used by different variable J!,, i + ,. Then we have
researchers have not appeared in the literature.

We present a general dyadic formulation for the electric Green's (L 2  ), -0
functions for such layered structures. The dyadic forms derived ay 2  

A (3)

here allow extension of previous analyses to cases where normally
directed currents exist, such as in thick devices. The electric-field where p- 2  - - -2 + k2 - ki. Equation (3) has solutions

Green's dyads are found in terms of associated Hertzian poten- f7l(X, y) - (X) exp( T ply) (4)
tial Green's dyads; these, in turn, are developed by an extension - -
of Sommerfeld's classic method [9], with components expressed where the coefficient W(X) is determined by application of
as 2-D spatial frequency integrals of the Sommerfeld type. Inci- boundary conditions; (2) can also be transformed to facilitate

dently, boundary conditions for electric Hertzian potential are application of boundary conditions:

utilized; an adaptation of Sommerfeld's [9] development of theseA X, y')
boundary conditions, which have been a source of confusion iP(X,y)-fgP(X;y,y') j _ dy' -. (5)
(compare, e.g., [10] and [11]). is given in the Appendix for the
reader's convenience. Application of the Green's dyads to the Here, J(F) +- j(X; y) and g"(,; y, y') - exp( - ply -. v'D/2p,
analysis of integrated microstrip circuits and integrated optical We will use (4) and (5) as prototype solutions for the trans-
waveguides is discussed. formed Hertzian potential in the structures of Fig. 1. Since the

coefficients W(X) will depend on the transformed impressed
II. PROTOTYPE POTENTIAL SOLUTIONS current through (5), inverse transformation of these expressions

In this section, we develop prot, ppe solutions for the Hertzian will allow identification of the Hertzian potential Green's dyads
potential excited in layered background structures by impressed G(FIF') for these structu.es, with the total potential given by
currents. These solutions will later be specialized to the cases in
Fig. I by application of boundary conditions. The resultant i,(-) -fG(Fl") - ( ) dV'. (6)
expressions for the potential in terms of the impressed current J*'(,
allow identification of Hertzian potential dyadic Green's func- Once the Hertzian potential has been determined, the corre-
lions, from which associated electric-field Green's dyads can be sponding electric field can be found as E, - (v v -+ k1 ) F1, or
found.

Consider the situation depicted in Fit 2. An impressed current )+ k A dV'
f(or an impressed polarization P-J/jw) radiates in the ith f J
layer of an infinite, multilayered dielectric structure, generating
electric Hertzian potential in each layer. The total potential in -f( 71'") dV' (7)
each layer is the sum of a primary part fP and a scattered part, jw(,

9
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cover cover Hav.ng completely specified A, we are now in a position to
l.s [: solve for the total potcntial in the cover medium. Inverse-trans-

S' .forming (9) after substitution of (5) and (10)-(13) gives the result

nil .- --- Ill - U' in dyadic notation

rw- -l .j FIP ) dV'. (14)

(a) (b) The Hertzian potential Green's dyad in (14) is found to decom-
Fig. 3. Dctail of potential componens in (a) integrated electronic circuit and pose into a principal and a reflected part: G(FIF') - IGP(rjF')

(b) integrated optical circuit. + G'( F )ith+, G'FF),wt
where the electric-field Green's dyad G(FI') is defined by G'( FIF') = .G,'.i + .( * G:'i + G.." + G " +-G,'. (15)

( -l")P.V.(vv. + k?)G(r-7')+ (7-'). (8) where the scalar components of the reflected Green's dyad are
P.V. indicates that spatial integration must be performed in the given in terms of 2-D inverse transform integrals
principal value (P.V.) sense, and L is an appropriate depolarizing G,'(iI')l (R,(X) 7'1 . - )
dyad [12]. 'F') -f R(X) e d7 (16G.(I~ ffj .,() , d'X. (16)

III. MICROSTRIP AND OPICAL CIRCUIT GREEN's DYADS G,'( FI1 ) - C 2(2)2p,

We now apply boundary conditions to the prototype Hertzian
potential solutions above to find specific Hertzian potential B. Integrated Circuit Green's Dyad
Green's dyads for the cases in Fig. 1. For the sake of brevity. Now consider the optical integrated circuit background struc-
sonme purely algebraic steps are omitted. ture of Fig. 3(b). The potentials in the cover medium, film layer,

A. Microstrip Green's Dyad and substrate are in this case

First, consider the microstrip integrated circuit background - + = 7 ,I . ,. (17)
structure of Fig. 3(a). The transformed potentials in the cover where c. f. and s refer to the cover, film, and substrate, respec-
medium and film layer decompose into principal and reflected tively. The principle potential iFP is as in (5) with t replaced by c.
parts as follows: The scattered potentials are written in terms of the prototype

I,. = ;+ I+ 2 (9) solutions (4)

where c and f refer to the cover medium and film layer, i'-A=,exp(-pv) ja1 -Bexp(p/y)
respectively. The principal potential f7' is given by (5) with i
replaced by c; the scattered potentials are written in terms of the if= - Cexp( - pfy) i' =- exp(p,y). (18)
prototype solution (4) as Once Ais found via application of boundary conditions, (17) can
,= A exp( - py) t  BeXp(py) is2 Cexp(-pfy). be inverse-transformed to give a general expression for the poten-

(10 ' tial in the cover medium.
(10) Application of tangential boundary conditions at y= 0 and

We apply boundary conditions to evaluate the coefficient A( X). y - - I once again gives the tangential components of A in terms
then (9) can be inverse-transformed to yield a general expression of a tangential reflection coefficient R,(X)
for the potential in the cover medium in terms of the impressed p, - p, R, p + p, tanh pt
current. A, - R,V,. a=x.: R,= R, -.

Application of tangential Hertzian potential boundary condi- p, + p, R, pf + p, tanh p1I

tions (see the Appendix) at y - 0 and y -- t results in an (19)
expression for the tangential components of A- in terms of a where the source term V is given by (12).
tangential reflection coefficient, R,() Application of normal boundary conditions at v = 0 and - t

p, - p coth Pi yields an expression for the normal component of A in terms of a
A.-R,V, a-x,z R,- (11) normal reflection coefficient R.(X) and a coupling coefficient

p +-P coth pt C (X)
where the source term 17 is given by K, p, - pR 4

A,- RV, + C[ j V', + jV], R,=

V " e-Po" K,p, + pR,

j, dv', ax,y,z. (12) p, + K p tanh p,
R4 I K =,f/( K = ,/([

Application of normal boundary conditions at y - 0 and = K, pf + p, tanh p, t
- t provides an expression for the normal component of A in (1 - R, )( 1 R)
terms of a normal reflection coefficient R,(X) and a coupling C =
coefficient C(X) 2 K, p,

Kp - ptanh pft '( K2 -1(1iR)(' je2A, R.V, +C[j V,+jV.K], R K  - .- p,( K - I)(I R -)(I+ R4)e ( " K' -K1)(.
Kp, + ptanhptt Kp/+ p,

C 2( K- 1)p, K cf/c,. (13) We can no%% solve for the Hertzian potential in the cover by
p , cothp)( + p, tanhip) 10 invcrse-transforming (17). The result is identical in form to (14).
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The Hertzian potential dyad again decompose into a principle "-.i--uml, 1. E,
and a reflected part; G('r-F') - iG'( F') + G'(''), with G' as t
in (15) and (16) and R, R,, and C as in (19) and (20).

IV. APPLCATIONS ,

In this section, we review some applications of the electric fl2  "m , E 2. (

Green's dyads found above in the analysis of waveguiding sys-
tens and compare them with specialized versions used by other
workers. Fig. 4. Herizian potential at a dielectric interface.

A. Microstrip Integral Equation potential exists in regions 1 and 2, separated by a locally planar

Consider the microstrip device illustrated in Fig. 1(a). If excita- boundary. The fields in both regions are found in terms of the
tion is provided by an incident electric field E', a surface current potential in the region, TI, or f12 , as fE-(k 2 +vv.)H, /H-
K is induced on the surface of the microstrip device. This jiv X 1n. Let the potential in each region at a point at the
induced current in turn supports a scattered field E' in the interface have components n - ifl + ll,, with i tangent and
system. The total tangential electric field at the strip surface must A normal to the interface, and & - x X n. The fields in each
vanish, or - ;- E' - ?. E. The scattered field may be written in region are given by
terms of the electric dyadic Green's function derived in Section a
III-A as E, k 2 n, + at -rl)

f -dS'. (21) a -a -

Thus, we obtain an integral equation for the induced surface (a a )
current on the device H - jwcJE-nl H.-jwd 'I. -- Il,ab at an

zfd(crj '). d' (22) H. - j,. ,,. (25)
j uir 3b

By assuming the microstrip device to be infinitely thin, we Enforcing continuity of tangential E at the interface gives v. U1
recover a specialized version of this equation that has been -V.IH2 and
successfully utilized by several workers in the analysis of thin l -Kn, (26)
microstrip structures (5]-[81. This more general version provides
the basis for continuing research on surface wave and radiative with K - c 2/Ct. In a similar fashion, continuity of tangential H
loss and coupling in thick microstrip devices, yields

B. Dielectric Waveguide Integral Equation n.,- K'.2 -an, (27)

Consider the integrated dielectric wavejuide of Fig. 1(b). If the an an

system is excited by an impressed field E', then the total field in Finally, V -II - f-H2 and (26) give
the system is E - E' + E', where E1 is the field scattered by the a an-i(2l)
waveguide core. The waveguide core can be replaced by an I., - H.,2 ) - (K 1  (28)
induced distribution of equivalent polarization P, - ((r) - nat

c)E(r-), and the scattered field can be written in terms of this Equations (26)-(28) are thus the appropriate boundary condi-
equivalent polarization as tions for electric Hertzian potential at a material interface.

If medium 2 is a perfect conductor, the vanishing of tangential
P'(r) =fd (-FF - Peq( (') E at the interface yields the following special case:g( f'( ') -- dV'. (23) aolwngsecacae

r, -0 . - 0. (9

Then, setting E - - E', we have ain - an (29)

f(r-) - " (24) REFERENCES
(C

[11 D. Marcus, Theo' of Dielectric Optical Waveguides. New York:
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The electric dyadic Green's function for layered media is
discussed. It is well known that for the free-space electric dyadic
Green's function go, evaluation of the electric field at observation
points withi the source region requires specification of a depola-
rizing dyad i. The dyadt is dependent on the geometZy of the
"principal volume" which excludes the singularity of Go. Special
considerations are invoked for the layered background media which
are appropriate for the electromagnetics of integrated electronics.

The relevant equation which uniquely defines the electric
field maintained by arbitrarily located electric currents in a
layered environment is established. Beginning with

E(r)=(k + vV-) (P + Gr).J(r I)dV' (1)

and using th Sommerfeld-integral representation for the dy ds
("principal"G has the pertinent singularity, "reflected" G1 is

wel I behaved) appearing in the integrand of (1), it is shown that
the electric field may be expressed as

4.4,4* -.-()=-j w0  lim G) )dV - L-J(r)/jw c (2)

6 -oj V-V6

where Ge andL are quantified.

In conclusion, it is shown that for the layered-media electric
dyadic Green's function, the Sommerfeld-integral representation is
appropriate and leads to an innate option for the principal volume.
The correction term in (2) is precisely the depolarizing dyad
corresponding to this preferred choice of the excluding region.
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An Observation on the Sommerfeld-Integral
Representation of the Electric Dyadic
Green's Function for Layered Media

regAi 1 y ' 0

MARK S. VIOLA AND DENNIS P. NYQUIST, mEMUER, IEEE % I

,iAh1*-The e11e -I dyadic Green's i~ferre01d dWki is

discussed. It Is well known that for the free-spce eectric dyadic Green's
function Go, evaluatdin of the electric field at observation points within th. ' • o -_--,_.
source region requires ~ecicaton of a "principal volumse" aong with the
corresponding depohizing dyed L. Special cosideratiom re inaked for rt.I. 21 -t 4 0 ' 0

yned b ckgronmd ,edl , which me appropriate for the electa omne*s --- W

of integrated electronics. It is shown that use of the SommerfeM-integral o tia

representation of the electric dyadic Green's function leads to an innate
choice for the depolarizing dyad. A coreponding principal volume is
subsequendy identfied it is demonstrated that there exists mi alternative
choice for this excluding region which leads to the same depolarung dyad

I. INTRODUCTION regss 3s y < -t

There is an increasing interest in the study of optical and a rebtrreteD
electronic circuits immersed in a layered dielectric surround. Fig. 1. Trilayered dielectric structure with sources in the cover.
Conventional differential-operator formulations for the fields
within these circuit devices are rendered ineffective due to the
inseparability of the applicable boundary conditions for struc-
tures having practical shapes. An integral-operator formulation, substrate region (y < - t) which is characterized by index of
based on the identification of equivalent volume polarization refraction n,. The region (y > 0) is the cover with refractive
currents, circumvents this difficulty. Construction of the integral index nc in which electric current density J, maintaining electro-
operator requires knowledge of the Green's function for the magnetic fields in all three regions, is immersed. All media are
layered surround. understood to possess limitingly small dissipation. Although the

A general development of the Hertzian potential Green's dyad ensuing analysis may be generalized for a structure having any
G for layered dielectrics has been discussed by Bagby and number of dielectric layers with embedded currents, the situation
Nyquist 11]. Based on the classical method of Sommerfeld [2], the in Fig. 1 serves for the purpose of illustration, and provides a
Hertzian potential dyadic Green's function was shown to have useful model for the background of practical electronic and
scalar components represented by 2-D ectral integrals. As optical integrated circuits.
asserted by Yaghjian [31, the singularity of G is seen to ise from Subsequent analysis assumes: i) time harmonic (eJ"') depen-
that part of the dyad which is the Green's function Gv ("prin- dence of the solutions to Maxwel's equations and ii) all integrals
cipal" Green's dyad) for the unbounded-space problem. In Sec- with unspecified limits span the entire space. The Hertzian poten-
tion I, the development in (1] is altered slightly so that identifi- tial subject to the Lorentz gauge satisfies the Helmholtz equation
cation of a natural depolarizing dyad L, relevant to the Green's
dyad G for the electric field, may subsequently be made in I+k.) x- -J/jo (1)
Section III. in each region (i -s, f, c for substrate, film, cover). Formal

Finally, the electric field is expressed in the standard form as a operation on (1) with the 2-D Fourier transform
volume integration of the scalar product of G" with the electric
current source J. The volume of integration extends over the F( - Jf)eA'dxdz (2)
support of the current density but excludes the singularity point
of GE. The excluding region is identified as the "principal where X - i + 2, reduces (1) to the ordinary differential equa-
volume" which corresponds to the preferred choice of the de- tion
polarizing dyad as tabulated in 131. An alternative excluding ( 2/ay 2 -p 2)( Ay) -- j(X;y)/jC, (3)
region, which is shown to be equivalent, is suggested to be useful
in practice due to its simple form. where v - F(f'), j- FfJ), and p2 -J + _ k;. Solution of

(3) is elementary, and may be written as a sum of primary
II. H T.x^ POTENTIAL GzREE's DYAD scattered parts. Thus this decomposition is

In this section, the Hertzian potential dyadic Green's function ,(r') }
is developed for the trilayered structure depicted in Fig. 1. A rilm '( X; y) - B.J8 g' (; y, P') -dP
layer of thickness t and refractive index n, is deposited over a V e

+ , f,*(X)ePiV+ - (X)e-Pi. (4)

Manuscript received August 10. 1987; revised March 31. 1988. This work
was supported in part by the National Science Foundation under Grant where gp(X; y, r) - e-1"re-Pc -y/2p,, and 8,, is a Kronecker
ECS-8611958. delta. The coefficients W, ± are determined by satisfying the

The authors are with the Deparnment of Electrical Engineering and Systems appropriate boundary conditions (1] across the dielectric inter-
Science. Michigan State University. East Lansing. MI 48824.

IEEE Log Number 8821764. faces and as y - ± oo.
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Inversion of the transform-domain potentials yields the solu- ([e-('-" e-P', ''- ) 1 J(r') j
tion to (1) with the potential in the cove region given by +Jj~ 2; - J 7 IL

1 7 ( J(r') 2 Jw ) y
(2wr ) -f(X;y,r)-dV dy, -a '

J( r') J

+f '(rfr') - d'. (5) a J(r')vj - +f . .- g, (X; y,,. -%- dV .
The reflected dyad G'(rlr") has scalar components Go(rjr) jtC

represented by 2-D Sommerfeld integrals of the generic form A subsequent differentiation with respect to y yields

1 e('6) a2 (f, ( ,)J( r')GO,(,I,') - 2,T'ffc.,,(X)e 2p, dYL(6 <g'y , /"

Each of the coefficients C.(X) is a well-be.aved function of X +f gP(X; y,r ) dr,
in the entire t-" plane; hence derivatives of G may be obtained +,> , j"C
by formally differentiating under the spectral integral. Special a2

attention is required in determining derivatives of the principal f -- Y ')

part of 11. <ya WC
The spectral integral on the right side of (5) represents the

primary part IIP of the Hertzian potential. It is shown in the + a ((r')
Appendix that under the assumption that J and v-J are con- f jWC,
tinuous and of compact support in V, derivatives up to second
order of I' may be obtained by formally differentiating under +[ ,-iX.,. rae-,'( - y  a
the spectral integral. Therefore, +"JJ; y 7 ay 2

1

(2.) ff

J," ) -- d V ' J d X (7a) (W1 , )e,.. ,

I JA'r [fg v. r' 1d] 2  7)p~~.;g(x; yf) 0***2
t V Picf 

2

(2w)'2 di] a2  J(r')

]5 g X " (y, dV- dV'
eikr JgNYr (rdr AfAx Z') C,

iso u y dw,, ff w % P # -Jx ' y)," ,z,)
ij"Jc

+Jfvv. H eier[f g(x; yri w so that (7b) becomes

-dV'b d2.\ (7b) 1(f) d~l

where the spatial integration has been split into regions in which
gP is continuously differentiable. Tangential derivatives (i.e., 12 XJ , Y,)-xdx'dz" e'rd d 2

,\

derivatives with respect to x and z) of the bracketed term in (7b) (2v )2Jf J
operate only on e". However, performing the derivatives withr1respect to y demands additional considerations. Appropriate use P 2)(

If i(X r, ') - - dV" 2  - '
of Leibnitz's rule (4, pp. 321-325] for differentiation under the JJ" -J(r)[jJ c  (8)

integral sign reveals that where L - 9@ and the dyad j is given by the expression

JYf< 9 ; , ' ( fA('')-,(v-')g2 P ,VV [Vo"V - "e-*""/,8ir pj, y'< y

+/ f (X; y,,') 7 d} (9)

The term L .J was extracted from exploitation of the Fourier
S gP( X; y, ') - dV inversion theorem [5, p. 3151, and is found to correspond exactlya<y jF) with that exposed in [3] for a "pillbox" principal volume. The

form of j suggests that the "slice" exclusion in Fig. 2 might be a
+ -gP( ; y, r') dv more natural principal volume pertaining to L. This assertion isf a y jp, verified in part B of Section 1II.
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7 "slice" volume shown in Fig. 2. Starting with the common
representation for the free-space Green's function 4,(rlr')-
e-jkjr-r'j/4rjr - r% it may be shown that for a "slice" principal
volume, the correction term E(r) for the electric dyadic Green's
function for field points in the source region is

7 "1 -S

EC(•) - - -lim Jv' (rIr')A'-J(r') dS' (13)

where Ss is shown in Fig. 2. The correction term above is now
Sshown to be equivalent to the correction term corresponding to a

pillbox principal volume. The surface integral term in (13) is split
into integrations over S, and S2 (planes at y ± 8, respectively).
This yields for (13)

E (r)- - fl o

., ( x', y + 8, z') dx'dz'
Fig. 2. A "slice" principal volume excluding the singularity point of the

electrc dyadic Green's funfction; osed Wfac S is the boundary of the +f v'+(rIr')I,.,_J,(x', y -8, z')dx'' (14)
slice volume.

As 8 - 0, S, approaches Sz and J4(x', y + , z'} approaches

III. ELEcTRC DYADIC GuEEN's FUNCTION J(x', y - 8, z') due to the smoothness of the boundary of V and

A. Development of the Principal Dyad the continuity of J at y'- y. Thus, (14) simplifies to

The electric field E is related to the Hertzian potential by Ec(r) - V''(rlr')I'Y2"J (x',yz')dx'dz' (15)
E - +(k +V' )1. Using (8), the principal part of the field may iCIE, (e0 's 7Y

be written as
where S extends over the x'-z' plane. Expressing v'4, in Carte-

EF( r) - -igtoffl Jfje( 7; F, F') AJr') dV") d 2 X sian form as k,

-7L.J(r)/j(c (10) V'+ (rr') - (- jk-1/R) 41R2

where the dyad j' -i/k2 +(1/4VZ)!gPe x ''. -[!(x'-x)+ (y'-y)+2(z'- z)]
Equation (10) is a useful expression for the principal part of where R - Ir - r], it is found that

the electric field due to the simple nature of the integrand
appearing in the volume integral. However, (10) is not written .in e-jkoR
the standard form as a volume integration of the scalar product V'4,(rlr') jy':-y- - jk, - 1/R) -- R- 528 (16)
of a Green's dyad with the electric current density. The depolariz-
ing dyad L has manifested itself naturally. Recognizing that the where Ra_[(X-X) 2 +(ZS
corresponding "principal volume" is a pillbox [3] yields the into (15) yields

standard form for the electric field: f~ ~ ~ t'r im f 28( - jk k- 11R.)

E'(r) -j, f.,,Olimj fv~o(,.J(rI) V'- J(r)/ji,€ Ec (r) "j, 8 _0-- ik-Rs

_ yz).. (17)where v is a pillbox excluding the singularity of G at r (nd 4RI z) dx'dz'} .

is given by The integral in (17) may be decomposed into the sum of
integrals over S - C, and 4. C, is a circle centered at (x, z) with

F,r') radius P. As 8 -. 0, integration over S - C, vanishes. If V is
(' e-PI(Y-y.)  chosen sufficiently small, then J(x', y, z') - Jy(r) and e - s4,'R4

(7+ v v/k )ffe""-(")dX, y'<y I so that (17) becomes

"" (-y~ yE (F).- fIjk, + /R(7+ E /k)ff_) 2(i- , (r) y im -5 a dx'dz' (18a)

(12)- 8f2W jk,.+1l/rpd 8
0 r2

B. Equivalence of Principal Volumes 8-0 0 2w

The principal volume v in (11) was identified to be a pillbox as - - 1-,Jj/r) im r 8 I /(8

tabulated in [3). A more useful, and equivalent, exclusion is the jW(C " v o O O p dp 18c)

17
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where r - (p; + 82)1/2. In going from (18a) to (18b), integration where F(v -,J) is the Fourier transform of V "J as defined by
over C has been transformed to polar coordinates. Performing (2).
the angular integration is trivial and yields (18c). Noting that the Next, use pe - p, + jp,. where p, and P are the real and
integrand in (18c) is a perfect differential, the term in braces imaginary parts of pc, respectively. The exponential e- P,1 'y'1 is
becomes of constant sign for all y. By the generalized first mean value

theorem for integrals (4, p. 1171, the right side of (21) may be
w k(jkl + lrd _ ( ) /2 (; 1  written as

- 8{ jk [ln(,2 + 82) /2_in a]  AfJ>jk, V [eJI'Re{ F( V '.J(x',I, z')) e - ' )'id - 111

+ [118-c _.2+8)r/Y-e" yd2--e'.-' - .o

-1 (as8-.0). (19) J" 2P 1 J

Finally, substitution of (19) into (18c) yields + jj [ej) Im ( F{ 7'.J(x',9. z')) eJ)1,I }
1

Er(r) - ,)J W C% -- . y e - P 'll'- l d y ' d 2A]M

which is precisely the same correction term appearing in (11). "- 2p ]
Therefore integration excluding a "slice" principal volume is

equivalent to a pillbox exclusion, and evaluation of (11) may use where ymi, < (i,0) < y,,, (J1- 0 for all y'< yi,, y> y".).
either of these volumes. The spatial integration in (22) is trivial and leads to

IV. CONCLUSIONS Re ( F( J- z }
In the study of layered-media electromagnetics, Sommerfeld A

integrals are used to represent scalar components of the electric
dyadic Green's function. The principal part of the electric field . _ ( p; Y) 1 d2'X
may be written as a sum of a spectral integral along with a 2 pr &
correction term that appears naturally. The spectral integration
may be replaced with the more standard volume integral as in
(11). Recognition of the depolarizing dyad, which has manifested + jff [eJXm{Ffv,.J(x',, z))
itself innately, identifies the appropriate principal volume (a x> k,)

pillbox). An equivalent excluding region to the pillbox is sug-
gested to be useful in practice due to its simple form. .( } ,; y) d2 ' (M)

2p,pc I
APPENDIX

It is now shown that the differentiation under the spectral where p(p,; y) - (2- e - X (
'-

Y- - - e - P y - - y )). Since v .J ;s
integral as in (7) is a legitimate operation. Without loss of continuous and of compact support in V, v' J L2 (i.e., the
generality, justifying this interchange of operations for the follow- space of square integrable functions). In particular, for each y,
ing is sufficient: V1J is an L2 function in the J-z plane. Using a standard

theorem from Fourier transform theory [5, pp. 310-313], the 2-D
A ,7V.[ejk"rfgP(X;yvr')J(r')dlr d2X. (AI) Fourier transform of V Jis an L2 function in the J- plane.

> k, ) Thus, F(V-J)-0( - -') as (X-o. o, c>0). The integrand in
(A4) is dominated in magnitude by a function which is indepen-

In (Al), k, is the real part of k. Evaluation of pe is made on the dent of r and 0Q(-2-'). The Weierstrauss M test [4, p. 470]
Riemann sheet with Re ( p, ) > 0. guarantees that the integral in (A4) converges uniformly, whereby

Assuming that J and v-iJ are continuous and have compact a standard theorem from advanced calculus [4, p. 474] justifies
support in V, use of the vector identity V -(pA) - W -A + 17, -A the interchange of differentiation and spectral integration.
along with the divergence theorem on (Al) yields
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ELECTRIC DYADIC GREEN'S FUNCTION FOR
LAYERED MEDIA WITH DIELECTRIC/MAGNETIC CONTRAST

Yi Yuan and Dennis P. Nyquist
Department of Electrical Engineering

Michigan State University
East Lansing, Michigan 48824

In the study of layered environments in electronic and
optical integrated circuits, integral-operator formulations are
increasingly exploited. Construction of such integral operators
requires an appropriate Green's function. In this paper, we pre-
sent the development of a general electric dyadic Green's function
for layered structures with magnetic as well as dielectric con-
trast. The general properties of that Green's dyad are studied.

In the tri-layered environment, a film of thickness t with

constitutive parameters (efff) is deposited over a substrate

(y(-t) described by (cSIS ). The region (y>O) is the cover with

parameters (Ecic). The arbitrarily directed electric current I

is immersed in the cover or film region. By Sommerfeld's classi-
cal method, a Hertzian-potential dyadic Green's function is found
whih satisfies general boundary conditions. The electric Green's
dyad is expressed in terms of its Hertzian counterpart as

244
U= (k + Vv.)GaIl') + i6(r-r')

( 1 ) = TGP(rI)') + ( , '

where U is the Hertzian-potential Green's dyad, 1 is a depolariz-

ing dyad, Gp is the principal Green's function, and Ur is a re-
flected Green's dyad. The scalar components of the reflected dyad
are obtained in 2-D spectral integral representations. The dyadic
Green's functions are reducible in certain special cases, such as
that of a conducting substrate layer.

The source-point singularity of the electric Green's dyad is

studied, and depolarizing dyad U is identified. It is demonstrat-
ed that the electric Green's dyad for layered media of general
contrast is reciprocal. Pole singularities of implicated reflect-
ion coefficients lead to general discrete surface-wave-mode eigen-
value equations.

The electric dyadic Green's function obtained is applied to
the microstrip transmission-line structure with magnetic (ferrite)
film and conductor substrate. The EFIE's based upon that Green's
function are solved by the MoM and by a perturbation approxima-
tion. Numerical results are obtained and compared with those of a
structure having a purely dielectric surround.
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DYADIC GREEN'S FUNCTIONS FOR EM FIELDS
IN THE LAYERED PC/IC ENVIRONMENT --

REPRESENTATION, PROPERTIES AND APPLICATIONS

Dennis P. Nyquist
Department of Electrical Engineering
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East Lansing, Michigan 48824

The study of EM interactions among electronic/optical devices in the
layered PC/IC environment has become a contemporary topic in electromagnetics
research. Interest is in microstrip or dielectric-waveguide based circuits
operating at microwave, millimeter, or optical wavelengths. Such circuits are
typically located adjacent to a planar, tri-layered substrate/film/cover
surround. In microwave and most mm-wave circuits, the dielectric substrate
layer is replaced by a good conductor. This paper exposes dyadic Green's
functions useful or the integral-operator description of such circuits, as
well as certain o- their general properties and applications.

Dyadic Green's functions for the Hertz potential and electric field
maintained by electric currents immersed in a tri-layered substrate/film/cover
surround are obtained in Sommerfeld integral representation; they are cast
into a form useful for the description of the EM field in the PC/IC environ-
ment. Arbitrary contrast of dielectric/magnetic properties among the several
linear, isotropic, homogeneous media in the tri-layered surround is accomo-
dated. A substrate with negative-infinite imaginary permittivity provides the
special case of a conducting layer. Alternative representations, arising from
real-line Fourier inversion and its subsequent conversion to a singularity
expansion involving pole and branch-point singularities, are exposed.

Several general properties of the Green's dyads are identified. Pole
singularities of integrands in the dyad representations correspond to TE/TM
surface waves supported by the asymmetric substrate/film/cover surround with
appropriate dielectric/magnetic contrast among layers. The electric Green's
dyad is-demonstrated to be reciprocal, and its source-point singularity is
exposed. The latter singularity leads to an innate contribution to the
electric field at a source point which is absent in conventional eigenfunction
expansions of that field. A mixed-potential formulation identifies a scalar
potential maintained by charge immersed in the tri-layered environment.

The Green's dyads are applied to obtain an integral-operator description
for electronic/optical components in PC/IC configurations. Application to
open waveguides leads to quantification of the complete propagation-mode
(including radiation) spectrum as well as an excitation theory for discrete
modes. A coupled-mode perturbation theory for systems of adjacent open wave-
guides is exposed. The integral-operator formulation also provides a descrip-
tion for coupling of patch antennas and other devices among themselves and
associated transmission systems. Typical numerical results will be presented.

20



Research Paper No. [17]

A NOTE ON THE MIXED POTENTIAL REPRESENTATION OF

ELECTRIC FIELDS IN LAYERED MEDIA

M.J. Cloud and D.P. Nyquist

21



ABSTRACT

A mixed potential formulation is given for electric fields in

layered environments. Contributions to the field from charges are

identified explicitly through a scalar Green's function for layered media.

The outcome is a computationally expedient Sommerfeld integral

representation.
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I. Introduction

The study of electric fields due to surface currents in millimeter-

wave integrated circuits [1,2] brings to light some facts about the

alternative representation of Hertz potentials. Despite their apparent

simplicity, these observations have not appeared previously in this form.

The points discussed in this paper bear directly upon the divergent spectral

integrations which are offered on several occasions [3,4] in the recent

literature; it is hoped that ultimately they will find application in

avoiding comparatively awkward formulations.

II. Hertz Potential Green's Dyad Formulation

Consider the configuration of layered dielectric media over a

conducting half-space as shown in Figure 1. The electric field E(r) in the

cover, maintained by surface currents embedded in that same layer,

decomposes linearly into two parts as E - EP(r) + E (r). The fields of

the right member may be termed the primary and reflected components. A

Hertz potential representation of E based upon this decomposition is given

by Bagby and Nyquist [1,2] as follows:

E(r) - (kc2 + W-) ( (1)

where K(r) describes source currents on surface S, and C - IGp + r is the

decomposition of the Hertz potential Green's dyad into primary and reflected

components. The dyad scalar components are given as double spectral

(Sommerfeld-type) integrals:

cc exp[j)' - r')]exp[-pcly - y'l 2
GP(jj ') - e2(2r) 2 d2X (2)

932(2i)2c
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G(rr ) ]J fR( )] expfj.\(i r - r')]exp[-p ly - Y'1] 2
It 1R ( _ __ __ _ __ __ _

GRC,(X) 2 d A(3)
P (A 2 (2r) p
(r,r )

AA A A A A A A

4. r ~xr r + r + 8 r az ,,,r Tewhere G xG x + y[(G ax) x Gy + (G zC/ + z G z. The R

and C are reflection and coupling coefficients detailed in [1,2]. Note that

2 2]A
PC - [x -k / is a wavenumber parameter, A xAx + zA is a vector

spatial frequency, and d2 X - dA dA
x z

The first term (with kc factor) in E(r) is proportional to the

vector Hertz potential contribution to E (produced directly by currents K),

while the second term is subsequently treated as the negative gradient of

scalar potential. In the present formulation, and in many similar ones

[3,4], it is found that boldly exchanging the order of differentiation

(i.e., the VV- operation) with integration too many times leads to

convergence problems with the resulting inner-nested spectral integrals.

Care will be taken in the present development to allow only one such

interchange; moreover, the impact of the derivative on the Green's function

is subsequently minimized by a technique of integration-by-parts.

Figure 2 illustrates the geometry of surface S, supporting currents

of integrated electronics. Assume that K(O) is a continuous function

everywhere on S, except possibly at the boundary C of subregion S p. The

exception is made because, although one physically expects continuous

currents, discontinuities could be introduced mathematically by subsectional

basis functions in numerical solutions. C+  and C" are auxiliary boundary
p p

contours just outside and inside of C p. Take C to be the outer contour of
A

S. Let S' - S-S, with n' the outward normal unit vector to S'. It is

important to note here that principal Green's function Gp may in fact be

represented either in Sommerfeld integral form, or simply as exp(-jkR)/4wR;

the latter form points out explicitly the nature of its source-point
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(R - - 3'I - 0) singularity. This singularity, unless handled properly,

invalidates a subsequent application of the divergence theorem. To maintain

complete rigor a small area should be excluded from S, at the location r, to

preclude the coincidence of r and r' during the spatial integration in (1).

However, at points where K is continuous there is no contribution from

either the excluded area or its boundary contour. Therefore, the exclusion

process is not detailed here. Points of surface current discontinuity are

handled in the following section.

III. Primary Component of Electric Field

Consider first the primary component of E. The electric scalar

potential contribution to EP is -VoP, where

OP - -(l/jwe)V.JsGP-dS'

- -(l/iwe)cJs@V_(Gp"K)dS1 + JS pV'.(GP'Z)dS'I. (4)

This expression is subsequently cast into a form which explicitly exposes

its electric charge sources. Although the method is conventional, it is

included here to guide the identification of similar contributions to the

reflected potential. The procedure is less obvious in the latter case.

Exchanging the divergence and spatial integration prompts vector

manipulation of the integrand as follows:

V-(CP9) - GPV-9 + vGP. - -V'.(GPR) + CPV' . g .  (5)
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Into the last term a substitution from the surface continuity equation,

V.K - -Jwa, is made. The scalar potential becomes

- (1/Iwe)[JsV'.(GP9bdS' + i Vl.(G p-K )dS']

+ (l/e)Js(GPa)dS' (6)

to which the 2-D divergence theorem is applied to give

OP - (I/e)[(I/Jw) fC0 GP(n'. )dl'

+ (1/Jw) 1Cp GP[n'-( " - K')dl'

+ Js GPds']

- (1fe)[ fcGo0Po.dl' fC GpPlpdl' + i PadS ] (7)

where K+ and are values of surface current on C+  and C ,respectively.
p p

Thus OP is written in terms of line and surface charges, while the original

derivatives have been effectively removed from GP .

IV. Reflected Component

For the reflected potential,

- -l/Jwe)V-f Sr-K dS' (8)
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one may follow the same general sequence of steps as above, but this time

exploiting the specific form of r. Following the procedure beginning with

equation (5), and defining a scalar Green's function Gr - Gr + aGrl/y,

A A

(0r-Ar A r r ArV.G K) -V(xG tK x - y[(aG c/ax)K x + (aG c/az)K ] + zG tKz

- )aG/ax)Kx + (aG /az)K

+ (a/ay)[(aGr/ax)Kx + (aGc/az)Kz I

- (Vxz G) + [V xz(aGc ay)]

- (VGr). K - (-V'G r). K (9)

Carrying the analogous steps to completion, one finally arrives at

( r (/)[ (coGr lodl + fCpGr Plpdl' + JSGradS ']  (10)

Therefore the reflected scalar potential is expressible in terms of

effective charges weighted by an appropriate Green's function. It is noted

that convenient form of the scalar reflected Green's function arose from the

specific form of the Hertz potential Green's dyad cited earlier. Since the

conversion process has effectively removed derivatives from this function,

the new formulation is expected to be computationally efficient. Finally,

the 9 field in the cover region is exp:essed as

- -iAJ. @dS - V(l/e)[ fC 0 Gplodl' + fc p Gp dl' + fS dS'I (11)
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where G - Gp + Gr is a Sommerfeld integral representation of the scalar

potential Green's function for layered media. The gradient operator may (at

interior points) be exchanged with the spectral integrals without rendering

those Sommerfeld integrals non-convergent.

V. Summary and Conclusions

The preceding sections illustrate a procedure for avoiding the

needless imposition of derivatives onto the Green's function, thus avoiding

convergence problems. In the process of converting to a less singular

formulation, unknown surface and line charges are introduced explicitly into

the problem. Presumably, for many applied problems, these charge functions

could be expanded in suitable moment method basis sets along with the

original surface currents.
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4.2 Mathematical methods--analytical and numerical

Efforts on this topic were devoted to the formulation and computation of

Sommerfeld-integral type representations for relevant Green's function ker-

nels. Analytical/numerical methods to accomodate the slowly-convergent (and

sometimes apparently divergent) behavior of those representations, arising

when the source-point singularity is implicated, were developed. These init-

ial preparatory investigations were necessary to acquire confidence in the

construction, computation, and use of the dyadic kernels described in Section

4.1. Studies on the computation of Green's function kernels are reported in

[1,8,121, while properties of the source-point singularity are addressed in

[8].
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Research Paper No. [1]

ACCURATE EVALUATION OF SOMMERFELD INTEGRALS
USING THE FAST FOURIER TRANSFORM
B.C. Drachman
Department of Mathematics
D.P. Nyquist and M.J. Cloud
Department of Electrical Engineering and
Systems Science
Michigan State University
East Lansing, MI 48824

Application of the conventional Hertzian-poten-
tial-based formulation of layered media electromag-
netics necessitates evaluation of Sommerfeld-type
integrals. An efficient and accurate method of
computing these integrals is presented.

The Fast Fourier Transform (FFT) may be used in
a straight-forward fashion to obtain accurate inte-
grations of periodic functions. It is explained
how, in these cases, the numerical integration meth-
od corresponds to the Corrected Trapezoidal rule
(with error proportional to the fourth power of the
step size). Attempts to use the FFT in such a
fashion on aperiodic functions result in significant
errors because, in these cases, the integration
method corresponds to the Rectangular rule (error
proportional to the first power of the step size).
Thus it is often believed that the FFT is a quick
but inaccurate way to compute an integral. When
used in conjunction with Simpson's rule, however,
the FFT gives extremely accurate results for aperi-
odic functions. An error analysis suggests a tech-
nique for integral truncation and choice of parti-
tion density. Examples are given in which this
method is applied to the numerical evaluation of
Sommerfeld integrals.

The method exploits the efficiency of the FFT
algorithm, while deriving additional benefit from
the fact that a single call of the FFT algorithm
returns sample values of the Sommerfeld integral at
many spatial locations. Moreover, this technique
should be well adapted for use with the point-
matching Galerkin's method of moments which requires
values of the Sommerfeld integrals at a set of
locations on a structure.
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Research Paper No. [8]

ON SONNERFELD-INTEGRUL ELECTRIC FIELD KERNELS FOR
NICROSTRIP-BASED CIRCUITS
D.P. Nyquist, M.S. Viola, M.J. Cloud and M. Havrilla
Department of Electrical Engineering
Michigan State University
East Lansing, MI 48824

Microstrip circuits are fabricated over the film/cover
interface of a planar, layered conductor/film/cover surround
environment. In an electric-field integral equation descrip-
tion of such circuits, the electric field tangential to metal-
lic microstrip conductors, maintained by surface currents on
those conductors, is required. A spectral approach through
Hertz potentials leads to sommerfeld-type integral representa-
tions for required Green's function kernels.

Let the microstrip conductors reside at y=O+ , adjacent to
the x-z film/cover inter-face plane. The field e(x,C) at the
conductor surface, maintained by surface current k(x,r) on
that conductor (both in the axial Fourier-transform domain;
transform variable 4), is then

e(x,) = lim+ (k 2+W-) f j (xylx',O)*k(x',)dx'y-O c Jcond
where k =n k0 (n =cover index), V V +zjt and C is a Hertz
potential reen' dyad in Sommerfeld-XYntegral representation.
It is convenient to pass the spatial integral and the differ-
ential operator, in turn, through the spectral integral over
E, since the former operations can all be performed in closed
form. This procedure is valid provided the details .source-
point singularity) are handled carefully and the y+O- limit is
performed lastly. In much of the recent literature, the lat-
ter limit is exchanged with the spectral integral; this inval-
idates the differential-operator exchange and leads to a di-
vergent spectral integration. Consequently, uncertainty has
arisen in the choice of appropriate expansion and testing
functions for use in MoM solutions to associated EFIE's.

In fact, pulse basis functions and Voint matching lead to
convergent spectral integrals if the y-.O limit is performed
appropriately. MoM matrix elements are represented by

I =lira+fO" W Ce-Pcy sin("8) (sin Exm)(sin &xn d

a O ao Cos CO dE
where W is a complicated function2of2 1 arying surface-wave
poles olothe surround) and p =(Q +C -kc )  . The most slowly
convergent case is a=o=x, whire W (O)Z for large arguments,
leading to an undamped oscillator§%ntegrand when y=O. It is
demonstrated, however, that the y-O limit does indeed exist,
and the convergence rates of the various I are compared.
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Accurate Evaluation of Sommerfeld Integrals Using the
Fast Fourier Transform

B. DRACHMAN*,**, M. CLOUD*, AND D. NYQUIST*

Abstract - Accurate numerical integration of Sommerfeld-type integrals by

the Fast Fourier Transform algorithm is considered. Several examples

illustrate in the process.

I. INTRODUCTION

The purpose of this note is to observe that the FFT combines naturally

with Simpson's rule for Sommerfeld-type integral computation. Standard

references, such as [1,2,3], discuss the FFT for periodic functions only;

however, even relatively simple Sommerfeld integrals have aperiodic

integrands.

A principal advantage of using the FFT is that a single subroutine call

yields a set of sample values of an integral (i.e., the integral for various

values of an integrand parameter). Such samples could be useful in

*This work partially rupported by Office of Naval Research under
Contract N0014-86-K-0609.

"$Partially supported by DARPA.

B. Drachinan is with the Department of Mathematics, M. Cloud and
D. Nyquist are with the Department of Electrical Engineering, Michigan
State University, East Lansing, Michigan 48824.
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themselves; for example, the parameter might be a spatial coordinate variable

in a moment method solution. In other applications Sommerfeld integrals

represent Green's functions nested within other spatial integrals. Samples

from the FFT might be useful in approximating the outer-nested integral.

II. SUMMARY OF NEWTON-COTES NUMERICAL INTEGRATION METHODS

To estimate an integral such as

I = b f(t)dt (1)
a

suppose [ab] is partitioned into N subintervals [titi+1 I with

t i = a + hi, i = 0,1,2,...,N-1. The step size h is (b-a)/N. Table 1

summarizes several well-known integration rules, provided f(t) is sufficiently

smooth. Note that 17 is some point in (a,b), and N is even for Simpson's

rule. These rules are summarized here for reference in later sections.

III. NUMERICAL INTEGRATION WITH THE FFT

The FFT algorithm computes the discrete Fourier transform

N-1
Sk+i = Z A n+ exp(j2nkn/N); k = 0,1,2,...,N-1 (2)

n=0

of the sequence A,...,AN. This may be viewed as numerical integration to

approximate

I(x) = J g(t)exp(jxt)dt (3)
0
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as follows. First, choose T sufficiently large so that the improper integral

in (3) is adequately approximated by

T
I(x) = f g(t)exp(jxt)dt (4)

0

for x in the range of interest. Make a change of variables, transforming

the interval of integration to [0,27r]:

I(x) = (T/27r) g(tT/2n)exp(jxtT/2,)dt (5)
0

Partition this new interval into N equal segments, each of width 24/N. The

rectangular rule (see Table 1) then yields the approximation

N-1
I(Xk) = h E g(nh)exp(j2rnk/N) , (6)

n=0

where h = TIN and xk = 27rk/T. Comparison of equations (1) and (6) shows

I(xk) = hSk+i, where An+t = g(nh). Therefore, the FFT is directly invoked

for efficient computation of I(x) by the rectangular rule.

The great accuracy found by those using the FFT for periodic functions

is easily explained. Observe (see Table 1) that if g(t) is periodic and

sufficiently smooth on [0,T], the rectangular and corrected trapezoidal rules

are identical. Thus fourth-order accuracy is obtained. For aperiodic g(t)

the method does not correspond with corrected trapezoidal rule, but to

rectangular rule, and is therefore accurate only to first-order.

For g(t) aperiodic, better accuracy is obtained by weighting the

integrand sample values g(nh) prior to the FFT call. Reference to Table 1

shows that the simple procedure of letting A, = g(0) + g(hN), A2 = 4g(h),

A 3 = 2g(2h), A 4 = 4g(3h) , ... , implements Simpson's rule within a factor
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of h/3.

To demonstrate the consequences of this improvement, consider the

following example: In order to compute the transform

g(x) = -I- f W et /2 eJXtdt

= 2__ Real fM e- t 2 / 2 ej x t dt

which we approximate by

2 T et2/2 ejxt dt

'./27r 0o

(Take the real part.) We choose T = 47r and N = 210. The FFT computes g(xk)

at 1024 sample points. To check accuracy, let xk = 1. Then

27rk _ 27rk
k- 1, -= 1 so k = 2.T ' 47r

k N-1 2jik/N
Since by (2), Sk+a I Ai+1 e

i=O
42nv T

S3 corresponds to g(X 2), that is g(x 2) = 7T N
-2/

Except for a constant factor, e /2 is its own transform. Hence g(l)

should be e- -5 . Direct FFT with unweighted integrand sample values (i.e.,

rectangular rule) produces an answer correct to only one significant figure.

The Simpson's rule scheme gives 13 digit accuracy using a CDC-750 computer and

the FFT routine from the IMSL library.

For another example, suppose sample values of Ko(x) are needed, where

Ko is the modified Bessel function of order 0, a Green's function for the

Helmholtz wave equation. For example, the sample values might bc needed to

carry out a numerical integration involving Ko(x) in another problem.
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Although there are better methods for estimating Ko(x), we use

= 62 ejxt
KO(x) f dt (7)2- (t2+l)1/2

In order to make the integrand decay more quickly, use integration by

parts four times and obtain

2 4 f 8t'-24t +3
S +1)9/2 eJxt dt (8)

so

K(X) = to J 8t4-24t2+3 ejxt dt (9)x 0 (t2+l)9/2

with - replaced by T 47r and N = 1024, a single FFT call with Simpson's

rule returned values Ko(1),...,Ko(10) to 6 place accuracy.

IV. ERROR ANALYSIS

Two types of error are introduced in the previous computations:

truncation and resolution errors. First, consider the truncation error. The

error introduced by truncating an improper integral is bounded by proper

choice of the stopping point T. Assuming g(t) decays monotonically for

large t, the truncation error is an alternating series due to the oscillation

of g(t)exp(jxt). Approximation of an alternating series £ (-l)iai, ai
i1l n

positive, monotonically converging to 0, by the nth partial sum . (-l)'ai
i=l

causes an error bounded by an+i. Choose T sufficiently large so that the

area enclosed by one of the half-oscillations is negligible compared to the

estimated integral.
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We now discuss why incorporating Simpson's rule into the FFT gives

dramatic improvement in aur examples. This effcct is not obvious, as can be

seen in the following case: if, in equation (1), f(t) is a highly oscillatory

function such as sin(At) with A >> 1, the derivatives increase in

magnitude, and the error bounds in Table 1 may actually increase with

higher-order integration methods. For example, if h - and A > 12 the

error bound in trapezoidal rule is larger than in rectangular rule.

However, in our examples the integrals are of the form of equation (4),

where g(t) is slowly varying in the sense that its derivatives all have same

order magnitude (all bounded by M, say) on the interval [0,T].

Suppose I(xk) is desired for equally-spaced points xo -

O,x 1 ,x 2 ,...,x S - P. First choose T sufficiently large so that I(xk) is a good

approximation to the original improper integral for all xk in [0,P], and

each Xk is included in the set (27rk/T; k = 0,l,2,...,N-1). For example,

suppose T = 47 and I(0), I(1), ... , 1(10) are desired. Our first choice of N

is to make N a power of 2 such that (N/2) > 2 7Tkmax, where

Xma x  2kmax/T = p 10 (see the Nyquist Criterion [4]). In this case

kma x  20, and N - 256 becomes the first choice.

Letting E, denote the error bound given by Table 1 for rectangular

rule applied to equation (4), we have

E < I(T2/2)[j(x/N)g(c) + (l/N)g'(c)]l (10)

where 0 < c < T. For Simpson's rule, the error bound is

E < j(T/N)4 (T/180)(g'V(c) + 4jxg-(c) + 6(jx)2g"(c)

+ 4(jx)3g (c) + (jx) 4g(c))1
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Assuming that g and the various derivatives of g are all bounded by M,

E < (T/N)(T/2)Mfx + 1] (12)

E < (T/N)'(T/180)M[l + 4x + 6x2 + 4x3 + x'] (13)

Consider first the case for which 0 < x A 1. Then

E ' ThM (14)1

E < Th 4M(16/180) < E for h = (T/N) < 1 (15)4

Otherwise, when x > 1

E < MT(xT/N) < MT(1/2) (16)

E < (T/180)(T/N)'M[I + 4x + 6x2 + 4x3 + x']

< (MT/180)[(6)(5)x'(T/N)'] < MT(1/2)'/60 < E 1

since (xT/N) < (1/2).

For this first choice of N we therefore expect more accuracy from

Simpson's rule. In actual practice, however, the choice of N is determined

as is commonly done, by doubling the number of partitions N (each step

reusing previously computed quantities) until convergence is obtained in a

Rhomberg scheme. In this process, each time N is doubled the ratio (xT/N)

is halved, hence the inequality E. < E, in (17) is strengthened.

A single call to FFT provides values for the next iteration in Rhomberg's

method [41 simultaneously for all sample points (xk). In this way, a
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"parallel-processing" numerical integration algorithm is achieved on a serial

computer via the FFT.

V. APPLICATION

As an example relevant to electromagnetics, suppose that the

Sommerfeld-type integral

r(x,,g) 40 exp(jxt)exp(-pjyj)dt (18)L- 2p

where p 2 = t 2 + g 2 , is required at 2M evenly-spaced values xk E [0,2W].

Let T = (27M)L, where L is an integer large enough for adequate

approximation. Taking the real part of the integral allows replacement of the

lower limit by zero. By its definition,

xk = 27k/T = k/IN; k = 0,1,2,...,N-1 (19)

Choose N for desired resolution, and recover every L'th evaluation by the

FFT.

Results from this technique are identical to those obtained by other

methods; moreover, the FFT/Simpson's rule combination is much faster since a

single call to FFT returns the required sequence of integrals for the set

(xk). This example is closely related to the last example.

VI. CONCLUSION

Numerical integration for aperiodic functions with the FFT is greatly

improved by the concurrent use of Simpson's rule. Some algorithms that
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already make use of the FFT could benefit from this slight modification. It

also appears to be a promising technique for the evaluation of

Sommerfeld-type integrals.
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Integration Rule Error

N-i
1. h I f(ti) hb-a)f'(7)/2

t=-O

f(a) + N-I 1 2
2. h f(b) + I f(ri)  -h (b-a)f"(7)/12

2 i=l

3. h f(a) + f(b) + N-i + ' f'(a) - f(b)] h4(b-a)f(iv)(,)/720

2 i=l 1

4. 1" [f(a) + 4f(tl) + 2f(r2) + + f(b)] -h4(b-a)f(iv)(n)/180

TABLE I

Numerical integration methods. The rule names are: (1) rectangular, (2)

trapezoidal, (3) corrected trapezoidal, and (4) Simpson's.
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4.3 EM interactions among integrated microstrip devices

This research topic includes the scattering of microstrip waves by inte-

grated devices and the large-scale interactions among such devices. Inter-

actions in the MMIC environment have been conceptualized through an EFIE

description of the microstrip/device system, based upon the electric dyadic

kernels exposed in Section 4.1. The general electromagnetic formulation for

such interactions is presented in [16].

Coupling among microstrip devices can be studied through a perturbation

solution which exploits currents supported by isolated system components.

Significant scattering of microstrip waves is anticipated only when they in-

teract with near-resonant devices. The quasi-closed-form Chebychev series

representations for microstrip line and device currents detailed in Sections

4.5-4.6 permits the quantification of scattering coefficients based upon such

a perturbation formulation.

The description of microstrip-based circuits by integral-operator equa-

tions which exploit the electric Green's dyad kernels leads to a number of

general properties and phenomena associated with such circuits. An excitation

theory for discrete microstrip line and cavity modes is obtained, which yields

the excitation amplitudes as overlap Integrals of impressed currents with the

modal fields of those devices. A coupled-mode perturbation theory for propag-

ation constant or resonant frequency shifts due to coupling among systems of

multiple microstrip lines or cavities is developed, again based upon the

integral-operator description of the sysyem. Research paper [16] exposes all

these results.

Large-scale interactions among systems of microstrip devices can be

quantified by the methods and approximations described in [16]. The research

topics of Sections 4.4-4.6 are, in fact, specializations of such interactions,

consequently [16] again provides the electromagnetic foundation for the study

of those topics.
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DEDUCTION OF EM PHENOMENA IN MICROSTRIP CIRCUITS FROM AN INTEGRAL-OPERATOR
DESCRIPTION OF THE SYSTEM

Dennis Paul Nyquist

Department of Electrical Engineering. Michigan State University, East Lansing, Michigan,
USA 48824

An electric-field integral equation (EFIE) description of microstrip-based circuits permits the
relatively general deduction of EN phenomena which Influence the behavior of those circuits.
Prior efforts by many researchers have used the EFIE formulation to study specific microstrip
devices. The present research exploits an EFIE description to study more broadly the EM phenom-
ena and Interactions In microstrip circuits. Included are the following topics: 1) identifica-
tion of the complete propagation-mode spectrum for microstrip from a singularity expansion of
its current. Including an excitation theory for discrete modes; 2) excitation of patch-device
resonances, which arise from temporal pole singularities; and 3) formulation of a coupled-mode
perturbation theory leading to propagation constant and resonant frequency shifts due to coup-
ling among microstrip lines and patch resonators.

1. Introduction

An integral-operator formulation is presented for for tangential t at the circuit surface requires
electromagnetic interactions In mLcrostrip-based .{i s] = 0. where is a unit tangent vector at
electronic circuits. It is a full-wave formulation
based upon the electric dyadic Green's function for any point on that surface. Expressing is in terms
currents immersed In the layered integrated elec-
tronics environment. Full-wave Integral equation of electric dyadic Green's function Ce for the lay-

methods have been used extensively for the study of ered environment leads to the electric-field inte-

specific microstrip devices. A survey of such gral equation (EFIE) for e induced on the circuit
methods applied to the study of discrete microstrip
propagation modes is included in (11. while a simi- -.r Ce{ l',).Wr]) = kc i{) (
lar treatment for microstrip patch antennas is ex- J -(1)

posed In [2]. The present research attempts to S
deduce more broadly those EN phenpmena which Influ- for all 'rS. where kc-nck and 'c=",/n with k. i 0
ence the behavior of microstrip circuits from an C C a C 0
electric-field integral equation description of the the free-space wavenumber and Impedance.

circuit system. The electric Green's dyad 13.41 can be expressed as
2. EFIE Description of Microstrip Circuits ge('iW'] = PV(kJ .] -)( ' - [(®-l'1 where 1 Is

c
The microstrip circuit configuration consists of' a Hertzian potential Green's dyad. Notation PV
conducting circuit devices embedded In the cover Indicates that Ce should be integrated In a princi-
layer adjacent to the film/cover Interface of a pal value sense I5] by excluding an innate 'slice"
tr-layered conduLtor/film/cover environment. A principal volume (61 to accomodate the source-point
dielectric film layer of thickness t and refractive sAIndex nf occupies -t<y<O between a perfect conduc- singularity at yy',. and -y is an associated

f depolarizing dyad. The Hertz potential Green's

tor In y<-t and a dielectric cover of Index nc in dyad Is expressed as 9= TGp + r. where Gp yields

y>O. Circuit components, of generally non-vanish-
Ing thickness, are consequently located In yaO theri p
where the y axis is normal and the x.z axes tangen- cover and
tial to the film/cover Interface. Total circuit GraG
surface S Is composed of N components( here the xrl, x  y_ x + G y + - ^ zr^
component contributed by the n'th circuit element t a n T t z

Is Snf, Fig. I depicts the circuit configuration in yields the reflected wave scattered by the. layered

cross section. and indicates a general pair of de- environment. Gr yields potential components tang-
vice elements. evrnn t ilsptnilcmoet ag

ential to the film/cover interface, while Gr yields
n

normal potential due to normal current and Gr coup-
COVER LAYER

y C les tangential current to normal potential. Reci-

S procity of the electric Green's dyad leads toa n Ge - ,
______O_ 

G~i~ Pa C r Ir)

Y-O FILM LAYE nf The several dyad components have Sommerfeld Inte-
C-t ngral representations

1103 eJ  r' -PclY ' l 2
CONUCTOR GP(I4,] re e d2A

Figure 1. Configuration of microstrip-based -2(2w2P C
electronic circuit.

Impressed current Ji maintains impressed electric r Rt ( j (
r -)

field f. which excites surface current t on the nJIr ( e 2 d 2r 4 C 2(2s) PC
conducting circuit system. Induced current 9 main- IGc(rlr') C(A)

tains a scattered field I. The boundary condition
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where 2= 2 current becomeswhere, zc 2 e-2, and d2 - d~d<. Wave-

number parameters are P, " (A a'n ; (,), > Tic _4J fC.

for I - fc. Reflection and coupling coefficients P (5)
are

A W) A (M) 2(N2 -)p where the sum of discrete modes Is contributed by
t n 2(fc c pole singularities and the continuous-spectrum con-Rta8 y. ZRn  ( C (Aze(A) tribution arises from deforming the integration

with path about the branch cuts along Cb. The continu-
4

ous spectrum current (p) is consequently Identi-
At Pc -pfcoth(pft)1 An  N _ - pftanh(p fled as the forced solution to EFIE (2) for points

z Ph p cothpt} Ze 4 * pftC(p C along C;. A discrete-mode excitation theory for
fcc amplitudes a- is exposed in the next section.

where contrast factor Nf , nf/nc . and Z
h 'e 

- 0 is P
o fc n. Excitation and Coupling of Hicrostrip Lines

associated with TE and T4 surface-wave poles, re- +
spectively, of the layered surround environment. The amplitude coefficients a- and pole order t In

P
3. Propagation-Mode Spectrum of Hicrostrip representation (3) are established here. If the

reciprocal property of g is exploited subsequent
The mlcrostrip line configuration is that special- to applying the testing operator (which implements
ization of Fig. I where the conducting elements
have Infinite extent along the waveguiding z-axis. the t. operation)
Infinite axial symmetry renders the Integral oper-
ator in EFIE (1) convolutional in the axial vari- lm dt k ()( -)
able, and Fourier transformation on that variable C-;pJC P

is consequently prompted. Transforu-domain quanti- tsties are denoted by lower-case letters such that to EFIE (2). then expansion of ge in a Taylor's
series about T4_ is prompted. Invoking defining

! ,z)} = (Z,] for all such quantities, where EFIE (4) for I- leads to vanishing of the contribu-
4 .AA

Sxx+zz Is the 2-D transverse position vector and tion from the first term of that expansion. TheC Is the transform variable corresponding to z. l
Subsequent to application of the convolution leading non-vanishing term is consequently the
theorem, EFIE (I) becomes first-order contribution proportional to (4;±)P

When representation (3) for is used in the re-
t.f -c( '1;0).'(0,C)dL' - - ( (2) sulting operator equation, it is clear that the

C 'c leading term can annul at most a first-order pole;
it is thus established that t-1.

for all ;*C. where C Is the boundary contour about
the microstrip conductor In the transverse plane. If reciprocity of g Is invoked again, and only
Green's dPd 2e(414. - PVk 2  .)(Ip');C + leading terms are retained, propagation-mode ampli-G(p-p') where - Vt J c with Vt the transverse tudes excited by e are obtained as

operator and (ZI';C) - rz(0(';z)i. The trans- a± t k p 4 
(p  ) (6)

form-domain electric Green's dyad has the useful P 1C P

reciprocal property g,(Z; ;C) - ge ('Z1;-C). where I satisfies the normalization constraint~p

Discrete propagation modes correspond to pole sing- -e (d ( - p ] -±l

ularities of 9(;,C) at Cwcp , near which P C ac P (7)

a ak C )/(±Cp)L (3) Coupling coefficient (6) is an overlap Integral of
e P t the impressed field with the discrete eigenmode

where 91Is the eigenmode current of a wave propag- 4I -*Ip current. If e0 maintained by $ is expressed in

ating In the tz direction. It Is demonstrated in ter e ae

Sec. 4 that t-1, so the poles are simple. If rep- rms of g . and the reciprocity of g Is subse-
resentation (3) for CNT is exploited In EFIE (2) quently exploited, then an alternative coupling

414 t coefficient involving the overlap integral ofthen, since Is regular at Us*t must sat- e

isfy the homogeneous EFIE and e PIs obtained. Using the latter excitation
amplitudes in expression (5) leads to the discrete-

t.f o(;Iz';C)'(;') -0 ... for all () moeC current
CP

with non-trivial solutions only for C-C p. The d - c P e (P )e dv'

discrete propagation modes are consequently de-
scribed by EFIE (4). ... for (z-z')-. (8)

The discrete propagation modes corresponding to The discrete system eigenjmode currents supported by
N coupled microstrip lines again correspond to

simple-pole singularities of k(pC) constitute one simple-pole <-plane singularities, and satisfy the
contribution to the singularity expansion of that coupled system of homogeneous EFIE's
current. Square root branch-point singularities In
the integral representation of 9e lead to similar I fC ge(P 'P P 0 ... all C,

-e E gppa,
singularitles in g and 9, with associated branch 1 n for m-1.,2....N (9)
cuts In the complex C-plane. If the real-line In-
version integral is deformed into the upperilower with non-trivial solutions for <-;<P. For nearly-
half C-plane for z>z'lz<z', then the space-domain
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dogenerate coupling, the system-mode C is near to pole, which establishes 1-1. If representation

a11 the C(0) associated with eigennode currents (12) is used in the resulting expression, and reci-
all h np procity is again Invoked, then the excitation amp-

k 
o  

the Individual Isolated microstrip. If litude Is obtained as the overlap integral
np-
reciprocity of g is exploited subsequent to appli- jk r

cation of the operator a (w) - e (r)-9.(r~w)dS (14)

et (0)] for p Ncp S

1 p... for where normalization constant C is

-e I
to EFIE's (9). then expansion of g In a Taylor's = p( r _e(_l____) . 'd 15P..0 C - dS e •?J ,,d, (15)

series about <=;C p Is prompted. The leading-term P J("

contribution vanishes for r-n by virtue of the de- An EFIE-based coupled-mode perturbation theory for

fining EFIE for t(0). while the first-order term a nearly-degenerate coupled system of N resonant
np

annuls the simple poles of k(',C). Retaining only devices is based upon the coupled system (13) of

the leading non-vanishing terms, subsequent to the IE's. A procedure analogous to that which lead to

eti ±+#1(0) (10) above yields the algebraic equations
perturbation approximation np a nk np leads to (0)np annp Cw-w(O)a +n a... orl_._(6

the homogeneous system of algebraic equations p ] Cmnan - 0 ... for -1,2...,N (16)

a±C± (<±C(
0
), c a ± a ... m-1.2. N (10) which yields the system-mode resonance frequency asmin m u p l  mnn (0) .. ml2..N(0

ana p an n "the solution to det[w] - 0. where w(0) are the iso-
P

with non-trivial solution only when det([I - 0. lated resonant frequencies. Coupling coefficients
Coupling coefficients are given by overlap Inte- are given by the overlap Integral of isolated cur-
grals of the m'th strip current with the n'th strip rents and fields
field as

S0kc -# (0) ±(0),d t  C l )S (01,(0,, (17)
C - C (p)'e (p)dt (11) an 17 mp np

mu ic up np (c

m
wl nwhere currents are normalized by equating coeffic-

while normalization coefficients C are given by lents similar to (15) to unity.

expression (7) applied to isolated elgenmode cur-
(0] 6. Concluding Remarks

rents (p on the m'th strip.

Cp
Several general properties of EN phenomena in mt-

For nearly degenerate coupling of two microstrip. crostrip-based circuits have been deduced from an

the perturbation approximation to system-mode prop- Integral-operator description of the circuit sys-
tem. The complete propation-mode spectrum of a

agation elgenvalues leads to ± - ±8. - mLcrostrip line was identified from a singularity

(r1+2 )/2 Is the average of Isolated phase con- expansion of Its current. It Is believed that this

stants and 6 - (a
2
.K

2
), Zwhere A - 6C1-<2)/2 and is the first such treatment of the continuous spec-

2 .* trum. An excitation theory for discrete modes
K
2
- C12C21 with normalization - along isolated microstrLp and a coupled-mode per-

turbatLon theory for nearly-degenerate coupling

5. Excitation and Coupling of Patch Resonators among any number of microstrip were exposed. Patch
device resonances were identified with temporal

Currents excited on a resonant patch device by Lm- pole singularities, while excitation and perturba-

pressed radiation satisfy EFIE (1). where S is de- tion coupling theories for such resonant elements

scriptive of a single patch or a coupled system of were advanced. Typical numerical results will be

such resonant devices. Resonant currents are as- included In the oral exposition of the paper.

socLated with pole singularities at "' in theP 7. References
temporal frequency domain, such that
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4.4 Propagation-mode spectrum of microstrip guiding structures

Research on the complete propagation-mode spectrum of microstrip guiding

structures exploits a transform-domain integral-operator description of the

structure and is based upon a singularity expansion of the microstrip current

[16]. It includes an excitation theory for discrete and continuous spectral

components. Discrete propagation modes correspond to pole singularities in

the complex transform plane, while the continuous spectrum arises from inte-

gration about branch cuts associated with branch-point singularities of the

Green's dyad kernels [2,5,7,16].

The discrete-mode quantification has been generalized [13,15] to include

the possibility of a ferrimagnetic thin-film layer. This study is based upon

a transform-domain EFIE description for current induced on the microstrip; the

dyadic Green's function kernel described above is exploited. The discrete

(principal, and several higher-order) modes are now quite well understood. A

new Chebychev-Galerkin's MoM numerical solution has been implemented using

Chebychev polynomials, modulated by appropriate square-root edge-condition

factors, for expansion and testing of the transverse dependence of unknown

eigenmode currents (both longitudinal and transverse).

Results indicate that the transverse current component Is negligible for

the principal discrete eigenmode, but becomes important in the higher-order

modes. This method provides a rapidly convergent quasi-closed-form solution

for the eigenmode currents, since analytical expressions for the current com-

ponents are available subsequent to numerical quantification of expansion

coefficients in the Chebychev series. Convergence is so rapid that two terms

suffice for the principal mode, and at most four need be retained for even the

second higher-order mode. It was found that coupling to surface-wave modes of

the layered surround, and consequent leakage phenomena, is unlikely to occur

for practical configurations with dielectric thin-film layers. Presence of a

ferrimagnetic film layer may alter this conclusion, however, and numerical

studies remain to be completed. The quasi-closed-form solutions for discrete

elgenmode currents are particularly suitable for application in perturbation-

type studies of their coupling with adjacent devices and other nearby micro-

strip lines. Extensive numerical results are presented in connection with the

formulation for coupled microstrip lines exposed in Section 4.5.

Radiation fields of the continuous spectrum have been conceptually iden-
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tified as forced solutions to the EFIE's at points along transform-plane

branch cuts. Their numerical quantification has been ititiated through a MoM

formulation [71 for the forced microstrip currents. Additional research on

potentially efficient approximate iterative solutions remains to be completed.

The radiation field is required for any serious investigation of scattering by

discontinuities along open microstrip in MMIC's. Since no suitable represen-

tation of the radiation field in microstrip-based circuits is presently avail-

able, this topic constitutes one of the major unsolved problems in the theory

of such circuits. It is conjectured that a suitable formulation can be ob-

tained based upon the integral-operator description of microstrip, since that

full-wave theory at least provides for a conceptual definition of the radi-

ation field and its spectrum [7,161.

Research papers [2,5,7] follow on the subsequent pages, while papers

[13,151 were included in Section 4.1 and paper [161 was appended to Section

4.3.
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Research Paper No. [21

RADIATIVE AND SURFACE WAVE LOSSES IN MICROSTRIP TRANS-
MISSION LINES: J. S. Bagby, Department of Electrical
Engineering, University of Texas at Arlington,
Arlington, Texas 76019, and 0. P. Nyquist, Department
of Electrical Engineering and Systems Science, Michigan
State University, East Lansing, Michigan 48824.

An exact dyadic Integral equation Is utilized In the
analysis of propagation In uniform Integrated microstrip trans-
mission lines. The object of the analysis Is to predict and
quantify the radiative and surface wave losses in such systems.

The axially-transformed surface current ;(;C) of a
natural mode on an Integrated microstrip line satisfies the
homogeneous Integral equation:

t.(k + VV.) dt' = 0, C L

where k is the wavenumber in the cover region, g(",';.{) Is
the Herizian potential Green's dyad of the background struc-
ture, c Is the complex propagation constant of the mode, t Is a
unit tangent to the transmission line, and L Is the cross-
sectional contour of the line.

The integral representation of the Green's dyad exhibits
singularity when the real part of C Is less than the propag-
ation constant of a surface wave mode In the Integrated circuit
background structure. It Is shown that for the dominant mode
of the line the singularity Is not Implicated, and all losses
are due to radiation Into the cover medium. For higher order
modes, however, the singularity is implicated, requiring inclu-
sion of a residue term representing excitation of surface waves
In the film layer. For higher order modes, higher losses are
observed due to excitation of surface waves In the film layer.

This equation Is solved numerically by the method of
moments for narrow and wide microstrip transmission lines. The
above-described effects are demonstrated In both cases.

cover medium, cc

microstnip line

gy=O

>film layer, Cf
.: :. . . . . . . . . . .. : : Y:: : : : : : : : : : : : :

ground p lane
/ . . . A
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Research Paper No. [51

COMPLETE PROPAGATION-MODE SPECTRUM OF
MICROSTRIP GUIDING STRUCTURES

M.J. Cloud and D.P. Nyquist
Department of Electrical Engineering

and Systems Science
B.C. Drachman, Department of Mathematics

Michigan State University
East Lansing, Michigan 48824

Results of investigating the propagation-mode
spectrum for longitudinally-invariant microstrip
systems are presented. The influence of a layered
conductor/film/cover background environment is
rigorously accounted for.

Surface current eigenmodes K(r) are solutions of
a homogeneous electric field integral equation
(EFIE). The EFIE, which is enforced at all points r
on the conducting microstrip surface S, may be stated
as

A (k 2 + V V .) '(') • K(r') dS' = 0

A.
where k is the wavenumber in thecgver medium, t is a
unit tangent vector to S, and G(r,r') is a Hertz
potential Green's dyad. This dyad depends explicitly
upon the thickness and permittivity of the film
layer. Often neglected transversely-flowing surface
currents are retained in the model through a coupled
integral equation approach, and are quantified along
with the longitudinal components.

Emphasis is placed on leaky microstrip modes
associated with transversely propagating surface
waves of the background environment. Numerical
soldtion is performed by Galerkin's method using
entire-domain basis functions.
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Research Paper No. [7]

Ph.D. DISSERTATION ABSTRACT

by

Michael John Cloud

Department of Electrical Engineering
Michigan State University

East Lansing, Michigan 48824

December 1987

Electromagnetic waves in millimeter-wave integrated circuits are studied.
Dielectric film and cover regions overlay a conducting half-space in the con-
figuration modeled, forming a non-uniform background for integrated devices.
Emphasis is placed on the microstrip transmission line in this environment.

This research exploits an integral-operator description of the system.
Constructed through Hertz potentials, an electric field integral equation (IE)
quantifies microstrip surface currents. Complex plane analysis in the axial
Fourier transform domain leads to the rigorous identification of discrete and
continuous eigenvalue spectra. Discrete modes are associated with simple pole
singularities, while the continuous spectrum arises from branch-cut integrals.
These modal spectra are subsequently linked to natural and forced solutions of
the IE.

Discrete wave modes are associated with the homogeneous IE, which is
solved by the moment method for electrically-thin microstrip. The current
density function is expanded in both subsectional and entire-domain basis
functions. Results clearly validate: (1) the dominant axial current approxi-
mation for narrow strips, and (2) the edge singularity for axial currents.
Dispersion characteristics are given for several modes; those for the fundam-
ental mode compare favorably with results already in the literature.

Solution of the forced IE, at points along the complex-plane branch cut,
yields spectral components of the strip radiation modes. The forcing function
is taken to be the electric field impressed by a vertical monopole current
that resides in the film layer. Preliminary moment-method results are given.

The transform-domain IE is also a basis for the study of coupling phenom-
ena in axially-uniform multi-strip systems. System propagation modes are
characterized by coupled currents sharing simple-pole singularities. Pertur-
bation approximations apply for loose coupling, leading to an overlap-integral
description of the coupling phenomenon.

Finally, a novel approach to the numerical evaluation of Sommerfeld inte-
grals, using the Fast Fourier Transform, is advanced.

53



4.5 Coupling between adjacent microstrip lines

Discrete system modes of a coupled multi-microstrip configuration can be

studied based upon a transform-domain integral-operator description of the

system. Those system modes arise fron pole singularities in the complex

transform plane. A Chebychev-Galerkin's solution to the homogeneous coupled

EFIE's for discrete eigenmode currents of an adjacent microstrip system has

been developed [101. A manuscript [18] describing this accurate and rapidly-

convergent full-wave formulation is presently in the review cycle. The iso-

lated-strip eigenmode propagation constant is found to split when two adjacent

microstrip become coupled, leading to two new system modes having symmetric

and antisymmetric parity among the associated currents on the two lines. This

formulation again leads to concise quasi-closed-form solutions for the eigen-

mode currents supported by coupled microstrip. Included in [181 are extensive

numerical results for both isolated and coupled microstrip configurations.

An EFIE-based coupled-mode perturbation theory for coupling among any

number of adjacent microstrip lines has been formulated [11,14,16]. It leads

to a simple formulation for propagation eigenvale shifts and relative ampli-

tudes of the various line currents for discrete system modes. Since the gen-

eral Green's dyad kernels are exploited, both dielectric and ferrimagnetic

thin-film layers can be accomodated. The simple quasi-closed-form Chebyshev

series expressions for the isolated eigenmode currents are well suited for

application in this coupled-mode theory. Numerical implementation leads to

results which agree almost exactly with those of the numerical MoM solution

except when the lines are very closely spaced. A research paper manuscript

describing this integral-operator-based perturbation formulation is presently

in preparation.

Papers [10,11,14,18] are appended here, while paper [16] was included in

Section 4.3.
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Research Paper No. [101

ENTIRE-BASIS MOM ANALYSIS OF COUPLED MICROSTRIP
TRANSMISSION LINES
C.-H. Lee, J.S. Bagby
Department of Electrical Engineering
University of Texas at Arlington
Arlington, Texas 76019

Y. Yuan, D.P. Nyquist
Department of Electrical Engineering and System
Science
Michigan State University
East Lansing, Michigan 48824

A system of exact dyadic integral equations is utilized in the
analysis of propagation in uniform coupled integrated microstrip
transmission lines. Axially-transformed natural mode surface
currents on N coupled microstrip transmission lines satisfy the
homogeneous coupled dyadic integral equations:

N4/X.e--- - -
t(Pl g (p p'-)° i(') dt'-O0, j=1 ..... ,N

where ki is the transformed surface current on the ith strip, g is
the electric Green's dyad of the background structure, is the
unknown propagation constant of the coupled mode, ij is a unit
tangent to the jth strip, and ei is t.', cross-sectional contour of the
ith strip.

The above integral equation is solved by the method of
moments. Longitudinal and transverse currents are expanded in
entire basis functions consisting of Tchebyshev polynomials of the
first and second kind with multiplicative factors incorporating the
proper edge behavior. This formulation is shown to converge to
accurate results in as few as three terms.

Numerical results in the form of dispersion curves and
surface current distributions are presented for the dominant and
first three higher order modes, both even and odd, for the case of
two identical coupled lines.
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Research Paper No. [11]

EFIE-BASED PERTURBATION APPROXIMATION
FOR COUPLED MICROSTRIP LINES
Yi Yuan and Dennis P. Nyquist
Department of Electrical Engineering
Michigan State University
East Lansing, MI 48824

To solve the eigenvalue problem of coupled microstrip
lines, a full-wave analysis based on an electric dyadic
Green's function is developed. The electric field integral
equations (EFIE's) are solved, by a Galerkin's MoM technique
with Chebychev polynomial basis functions, for both isolated
and coupled microstrip. The direct numerical solution be-
comes very time consuming for a coupled microstrip system,
consequently an approximate coupled-mode perturbation formu-
lation is pursued.

In this paper, we present an EFIE-based perturbation ap-
proximation to solve for the system eigenmodes of N coupled
microstrip lines. In solving the coupled EFIE's, the eigen-
mode current of the isolated line (which is obtained by a
Galerkin's MoM solution to the isolated EFIE in a convenient
Chebychev polynomial series) is used as a first-order pertur-
bation approximation for nearly-degenerate eigenmode currents
of the loosely-coupled system. The EFIE's yield a matrix
equation

C )a C-C ] + C a = 0 ... for m=1,2,...,N
nom

where C is the unknown propagation eigenvalue, C (0 is that
mp

eigenvalue for the p'th mode on the n'th isolated microstrip,
a is the current amplitude, and the C are coupling coef-n m
ficients involving field/current overlap integrals. C is
that value which leads to a non-trivial solution for the an
Since the Cmn are C-independent, the numerical procedure is

relatively efficient. For the special case of two-line coup-
ling, it is found that the propagation eigenvalues split and
shift symmetrically away from their isolated limit as the two
microstrip become closely spaced.

A numerical implementation of the perturbation method is
developed. The numerical results of the perturbation approx-
imation are compared with those of the MoM numerical solution.
Computation times are also compared, and the validity range
of the perturbation approximation is investigated.
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Research Paper No. [14]

COUPLED MICROSTRIP TRANSMISSION LINES: FULL-WAVE
PERTURBATION THEORY AND EXPERIMENTAL VALIDATION

Yi Yuan , John Vezmar, Gregory King and Dennis Nyquist
Department of Electrical Engineering

Michigan State University
East Lansing, Michigan 48824

The coupling between adjacent, parallel microstrip transmis-
sion lines in the micro/mm-wave PC/IC environment is studied both
analytically and experimentally. A numerically efficient coupled-
mode theory is obtained through a full-wave, EFIE-based perturba-
tion approximation. The perturbation theory leads to propagation
eigenvalue shifts associated with symmetric and antisymmetric
coupling of both the principal and higher-order propagation modes.
Experimental measurements are made on PC-board implementations of
coupled microstrip pairs at micro/m wavelengths to confirm the
predicted coupling lengths.

A full-wave EFIE formulation for the currents on N coupled
microstrip lines, located in the cover layer at the film/cover
interface of a tri-layered conductor/film/cover environment, is
based upon the Sommerfeld-integral representation of an appropri-
ate electric Green's dyadic. The perturbation solution to those
coupled EFIE's exploits a rapidly-convergent, modulated Chebychev
series numerical solution for the isolated strip currents as the
zero'th-order approximate induced current in the coupled system.
Propagation eigenvalues C for coupled system modes satisfy

(0)C am C-C + C a = 0 ... for m = 1,2,...,Nmm - mp ]  Cmn n "'
n~m

where C(0) is the phase constant for the p'th mode on the m'thmp

isolated microstrip, a is the current amplitude on the n'th
strip, C is a normalization constant, and the C are couplingmm mn
coefficients involving field/current overlap integrals. For the
case of two coupled lines, the propagation eigenvalues split and
shift symmetrically away from their isolated limit as the micro-
strip become closely spaced. A simple coupled-mode theory leads
to the coupling length in terms of the eigenvalue shifts.

The coupling length is measured experimentally, at micro/mm
wavelengths on PC-board implementations of two coupled microstrip,
to validate the perturbation-theory predictions for similar sys-
tem parameters. A monopole microcoax probe is used to measure the
axial electric field amplitude distribution along the coupled sys-
tem. The probe is inserted through the conducting ground screen
into the film and/or cover layers to measure the normal electric
field there. A pattern of small holes is drilled through the PC
board to implement probe insertion. A harmonic heterodyne detec-
tor assures measurement linearity. A new theoretical study of
higher-order mode coupling is included.

57



Research Paper No. [18]

ENTIRE-DOMAIN BASIS MOM ANALYSIS OF
COUPLED MICROSTRIP TRANSMISSION LINES

C.-H. Lee, J. S. Bagby

Department of Electrical Engineering

University of Texas at Arlington

Arlington, TX 76019

Y. Yuan, D.P. Nyquist

Department of Electrical Engineering

Michigan State University

East Lansing, MI 48824

58



Abstract

A full-wave spectral-domain integral equation formulation is used to

analyze coupled microstrip transmission lines. A method of moments

solution is implemented utilizing entire-domain basis functions which

incorporate appropriate edge conditions for transverse and longitudinal

current components, allowing for closed-form evaluation of spatial integrals.

In contrast with earlier subdomain basis solutions, improved accuracy is

obtained using far fewer terms. Numerical results in the form of

propagation contants and current distributions are presented for the

dominant and first two higher-order modes, and are compared to results of

other techniques.
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1. Introduction

The problem of analysis of coupled microstrip transmission lines is one of

both considerable practical interest, and of long history. Traditionally,

various quasi-static methods [1-5] have been used to compute the propagation

characteristics of the coupled system. However, such methods are inherently

inaccurate at higher frequencies, and are also found to be inadequate at low

frequencies for many useful combinations of substrate thickness and

dielectric constant [6]. In such cases a more accurate full-wave analysis must

be utilized.

Recently, an exact spectral-domain coupled integral equation formulation

has been introduced [8]. A subdomain basis method of moments solution of

the coupled equations has been implemented and yields accurate results in the

form of current distributions and propagation constants for the dominant and

several higher-order modes [7]. However, this method requires a large

number of basis functions to achieve desired accuracy, yielding long

computation time.

In this paper an entire-domain basis method of moments solution is

utilized. The basis functions are chosen carefully to incorporate the proper

behavior at the edges of the strips. Besides allowing closed-form evaluation

of spatial integrals, it is found that good accuracy is obtained (in the case of

an isolated microstrip) for as few as three basis functions for each current

component of low-order modes, yielding a compact approximate closed-

form solution for currents and a substantial savings in computation time.
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In section 2 the mathematical formulation and numerical solution

technique are introduced. Numerical results in the form of propagation

constants and strip current distributions are presented in Section 3.

Conclusions and areas for further investigation are given in Section 4.
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2. Formulation

Consider the coupled microstrip geometry depicted in Figure 1. The

integral equation satisfied by the unknown surface current with an assumed

propagation dependence of exp(j(cot- z)] on an isolated microstrip

transmission line is given in [8]. This equation can easily be extended to an N

coupled microstrip transmission line structure [7], and takes the following

form:

tj.(VV. +kc2) J (plp'; ).ki(p')de'=0, peg,j=1....N. (1)
i=1fl

where 0' is the axially-transformed surface current on the ith strip, g is the

transformed electric Hertzian potential Green's dyad of the microstrip

background structure, is the unknown propagation constant of the coupled

mode, tj is a unit tangent to the jth strip, ei is the cross-sectional contour of the

ith strip, andV=V + aj z=x- + j z is the transformed del operator.
ax ay

The Hertzian potential Green's dyad decomposes into a principal and a

reflected part, -=!gP+5r, where gP is the 2-dimensional unbounded-space

Green's function in integral representation, and

- _ - r- - r - .r -,

gr(P Ip,)=xgt x+Y (-g x+g, y+jAgc Z)+zgt z (2)

The scalar components of the reflected Green's dyad are given in terms of

inverse transform integrals:
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r (00

g(ptp}') JR(X) d (3)

r - - (4 (P
gC(PIP') 

J
2 2 2 2 2 2 2 2 2

Here X =P + C , X -kc ,Pf =X -kf, and the reflection and coupling

coefficients are given by

RE- PC-pf coth (pft) Kpc-pftanh (pft)
pc+ pfcoth (pft) Kpc+ pftanh (pft)

(4)

C= 2(K-)pc], K=-f[pc+ pftcoth (p ft)] [K pc+ pftanh ( pft)] ec

2.1 Two identical microstrip lines

Now consider a coupled system of two identical microstrip lines. Assume

that the lines are infinitely thin and are extended axially to infinity, as shown

in Figure 2, where b is half of the spacing between the centers of the two

strips and w is half of the strip width.

In this case, the integral equation becomes
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. Li.,(k: -) (pix',y':O;,•ki(x', y'=0; C)d x'= 0, j=1,2 (5)

where interchange of differentiation and integration is valid since y # 0. As

y-+O, the contour involved in the integration is only the path along the x-axis

and is denoted as e.,. For the specialized structure, the tangential unit vector

t and the surface current j can be expressed as

t=xtx+ztz, k=xkx+zkz

To evaluate equation (5), we rewrite the integral representations of the scalar

components gp and aS

g,, =(p I x; )=f '-(6

-00

with

ip= e i(Xx')e- p CIy l

r

t rt ej (x-x ) 'PCy

r e e

i k n6 4 c'CC
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where the fact y'--O has been applied. Substitute (6) into (5) to obtain

Limj ff (k2== -tj. L-I (kc vV -) i (p i'; ,4)- k ('; ) d4 dx'=O0 (7)
y--*O i'-

i~l

Notice that the operator V is now V=j x+-y +j z since -- j when we
ay ax

interchange a and f d 4.
ax

After some algebraic manipulation, we obtain

t. =(ip+ lr)(txkx+txkz) (8)

t.v .. = j x+g t) [(P+ r0 rj k:+ k-pcc +j kz)] (9)

Substituting (8) and (9) into (7) and taking the limit y-* 0 in the results, we

obtain two coupled equations by letting t = x and j =z. They are
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2 j ( icc' (21+R )k - 4( l + R -p C ) (4 k + z] d dx' = 0

- 2 f 41rpc~)

2: e ( , [k~ 21+R )kz- (1 +R - c )4 x z1d dx' =0
1=1f J 4 7CPC

The final form of the integral equations for the two indentical. microstrip

line structure can be obtained by resolving ex as ex= b - b +w] and

*b+w

ej4(x-x*) 2

-b-w
(10)

b+w

+ (kc R x-( ' x2 z) d'

-00

b-w
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-b+w

-, e J (x.x')

ze (kcRkzI- (R-C')(4 k xr +I k z j) ] d dx'
f f 4xp c

-b-w (11)

b+w

oj(x-x,)2

+ e (k2 Rkz2- C(R- C') (4 kx2+ C kz2)] d4 dx'= 0

b-w

Here kxl, kzl and kx2, kz2 are transverse and axial currents for strip I and

strip 2, respectively, and

2p,
R =i +Rt=PC + p fcoth (p ft)

2(K-I)p2
p [pc + pfcoth (pft)] [Kpc+ p ftanh (pft)]

Equations (10) and (11) are the coupled integral equations for the

microstrip structure depicted in figure 2. They have a non-trivial solution

for kA s and k -'s only when m is an eigenvalue; here m=O,1,2,..., is the
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mode number. In practical analysis, we can take advantage of the symmetry

in x inherent in the coupled structure to further simplify the I.E.'s. For

symmetric eigenmodes the currents exhibit even symmetry and we let

kxl(x') = kx2(- x') and kI(x')= kz2(- x'); similarly, for antisymmetric mode
we let kXI(x')= -kx2(-x') and k, 1(x')= - k2(-x') since the currents now

have an odd symmetry. Then the coupled I.E. can eventually be written in

terms of just k,2(x') and kz2(x'). We will solve the coupled I.E.s by the

method of moments using entire-domain basis functions.

2-2 Entire-domain basis MoM solution

The MoM solution to equations (10) and (11) depends on a reasonable

choice of basis functions. These basis functions should incorporate the edge

conditions that k, is singular and k, is zero at the edges of the microstrips. In

this paper, instead of using subdomain basis MoM for which the solutions

satisfy the electromagnetic boundary conditions only at discrete points, we

use entire-domain bases for expansion of the unknown surface currents and

testing. The main advantage of entire-domain bases lies in problems where

the unknown function is assumed a priori to follow a known pattern [9]. In

such cases, entire-domain functions may render an acceptable representation

of the unknown while using far fewer terms than would be necessary for

subdomain bases.

Based on the results presented in [7], it is found that Chebyshev

polynomials multiplied by an appropriate edge-factor are one of the best sets

that fit the solution currents of this coupled microstrip structure well. In our
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work we choose Chebyshev polynomials of the second kind U, (x') to expand

the unknown transverse transmission line currents since the latter can

accurately be represented with a linear combination of just few functions of

this kind. By similar reason, the same polynomials of the first kind Tn (x')

have been used for axial currents expansion. Use of these functions has the

added advantage of allowing spatial integrals to be evaluated in closed form.

From above discussion, we expand k,.(x') and k,.(x') as follows:

x'-b x-kx2(x')- I ) an aU.n
n=O

1 N-I x'-b
kz2(x') b (-)

x-b n=o

w

where an and bn are expansion coefficients representing the contribution of

each order of the Chebyshev polynomials Un (x') and Tn (x') to the unknown

surface currents and the factors in front of the summation terms give Un (x')

and T. (x') the correct edge behavior.

To test the coupled I.E.s after doing the expansion of unknown currents,

we follow Galerkin's method and utilize the same functions for testing. We

need the tabulated integral formulas listed in [10] and in the appendix for the

calculation involved in current expansion and testing. For the sake of

brevity, we omit some purely algebraic steps and finally obtain the I.E.'s for

the coupled structure as
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symmetric modes:

N-i j 4b Fj 2 1 m A ) Jn A )dX:Ia. (n+1 2cos (4b) Re h) - sin(4b)I Tm l][,R - (R-')

-N- b~ w f[cos (4b) Re -fl}sin(4b) Im (jl}] (R -C') Jin 1(AW) J~(w) d4 =0

0

N-1 e~ j (4b 1F21Z:- n(n+1 [cs(b Rew -co (inb)b ReiJ-i() i n) -(PR- C')j J m(W) J ( W) d =

n=O J PC

antisymmetric modes:

Go

N-I je b ( ) i e( n](1:bw [cos(4b) Im sn(tb) Re~"] C') M+l(W) Jn( w) d4 =0
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z : aje j IbR j )S (n+) - [cos(kb) Im (jn +sin(4b) R (j (R-C')Jm(4W) Jn+1 Rw)d
n=O PC

N-i e j4b [cos(jb)im~jn)+sin(Rb)Re jnR ] k2R.r2R.c,)(
- bn wI o(b m()[cR-

n=O f w) PC (R - Jm(4w) J

The integration limits (-o, oo) in the variable can be reduced to

[0, oo) by considering m and n to be even or odd respectively. Those terms

which are odd with respect to 4 will integrate to zero , and those even terms

will survive and the final I.E.s can be written as two times the same integral

with the integration limits [0,oa). In matrix form the I.E.s can be written

as

a0  0

aN-I _ 0

Zc ZZ bo 0

2N x 2N 2Nx I 2N x 1
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where each element in the Z matrix is in terms of a spectral integral on , and

ao,... ,a N..1, b , ... ,b N- I are coefficients for expansion polynomials. We have

2N equations for 2N unknowns. To obtain a non-trivial solution, the
determinant of the coefficient matrix must vanish. Since Matrix elements

depend on the propagation constant , we can iterate to find m for the
eigenmodes. Some typical calculated results will be shown in next section.
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3. Numerical results

A computer program in Fortran 77 using the method described above was

prepared to calculate the propagation constants (or eigenvalues) and currents

for the fundamental and higher order modes of the coupled microstrip

structure. For convenience in comparison with the results in [14] and [15],

the case with a dielectric constant of nf=kf/ko=3.13, ne=l.0,

t = 0.635 mm,w = 1.5 mm and a varying distance b has been calculated and

will be presented here.

3-1 Eigenvalues

Table 1 shows the eigenvalues for the fundamental and first two higher

order modes at operating frequencies near cutoff. For each mode at the

specific frequency, it can be seen that they agree with the well known fact that

a< iso < Cs, where Ca iso and Cs are eigenvalues corresponding to

antisymmetric, isolated, and symmetric modes, respectively. The smaller the

spacing b/w, the larger (smaller) the eigenvalues for symmetric

(antisymmetric) system modes. When the separation of the two coupled

microstrips is large enough (in our work, about b/w _> 2), the eigenvalues

converge to the corresponding isolated one. Indeed, the symmetric and

antisymmetric modes can be viewed as emerging from the corresponding

isolated mode. Figure 3 shows the case of EHo Mode. While (b-w)/w is

getting smaller, eigenvalues of the EHo symmetric and antisymmetric system

modes are separated further, and ultimately, when two microstrips contact

on inside edges, the EHo symmetric mode goes to the EHo mode of an isolated

strip with double width, and the EHo antisymmetric mode goes to the EH1
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mode of the same width-doubled strip.

The behavior of eigenvalues for this coupled structure agrees very well

with the results obtained by using the analysis in [1].

3-2. Currents

The axial and transverse currents for each mode mentioned above are

shown in figures 4, 5 and 6 (since currents have either even or odd

symmetry, only k, 2 and k, for each mode are shown here.). In numerically

quantifying the currents, we found that three Chebyshev polynomials are

enough to accurately represent the unknown surface currents on an isolated

microstrip. However, for currents on each microstrip of the coupled system,

we need the first five to obtain an accurate result. It can be seen in Figure 4-

a, b, 5-b and 6-b that due to the repulsion of the surface charge, currents for

symmetric modes have smaller value near the inside edge than at the outside

edge. On the other hand, due to the attraction of charge, the antisymmetric

modes have larger current near the inside edge. This behavior of currents is

not so obvious in figure 5-a and figure 6-a, since at such low frequencies, the

effective width of the strip is so narrow that it can not fit the complete pattern

of the currents. At higher frequency (40 GHz for EH1 mode or 90 GHz for

EH 2 mode, for example) we did find that transverse currents for EH 1 and

EH 2 have the same behavior as mentioned above. In all cases, we can see the

currents for isolated line lie between the two groups of currents of

symmetric and antisymmetric system modes as expected.
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Conclusions

A full-wave spectral-domain integral equation formulation has been
presented for analysis of coupled microstrip transmission lines. A method of

moments solution utilizing entire-domain basis functions which incorporate

appropriate edge conditions for transverse and longitudinal current

components allows for closed-form evaluation of spatial integrals. In

contrast with earlier subdomain basis solutions, improved accuracy is

obtained using far fewer terms. Numerical results in the form of
propagation constants and current distributions for the dominant and first

two higher-order modes compare favorably to results of other techniques.

A more difficult problem is the solution in the case of lossy modes. This

condition occurs when the propagation constant falls below the eigenvalue of

a surface-wave mode supported by the integrated circuit background

slabguide structure. In this case singularties in the spectral integrands move

close to the real axis, and complex-plane evaluation techniques become

necessary. Work along these lines is proceeding, and is expected to yield

results in the near future.
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Appendix

Other than the tabulated integral formulas listed in [10], we need to

develop formulas for evaluating following integrals:

f 1-1 2 co s ax U nWdX ... (1) f N1-x 2sin ax (x)dx ... (2)

s a0) T (x) .. (4)

dx dxoxr.x -x (3) sinax x 41- x2  ()

To evaluate (1) and (2), refer to Gradshteyn's book, eq. (7-321), p. 830,

which is

1

V- ~ 1-Vn
(1. 2 x) axiax cnv W =2 i F(2v+n) -vC(xd= a J,+n(a)

f l ) n! r(v)

Since Un(x) = C n (x), where Cn (x) is the Gegenbauer polynomial, The above

formula can be specialized to

Y1- xeU (x)dx= F(n+ 2) 1- i c(n+1)Un (x ai+, (a) = - J +t(a)
n! f(1) a
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Thus we obtain following formulas for (1) and (2):

11 . x2cos ax U,, N d x = Jn +1/~ (a) Rei}

fl a
-1

1 sinx U. x= (n+1)n
1- xcsax Un(x)dx= Jn+1 (a) Im(i

a

Similar procedure can be taken for evaluating (3) and (4). We now refer to

eq. (7-355), p. 836, the same book:

2

T2n+l(x) sinax d =(_1)n - 2n+l (a)

f 1

dx X
T2n(x)cosax w = (-1) -2n(a)

From this we can write

,1

co 0, for odd n.

cos ax T(x))n/2,(a) foreven n.
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n-I
(-1)2 2 Jn(a), for odd n.

sin ax T() dx

-1-X 2  0 for even n.

Also notice that

I

e T(x) cosaxT. dx + i sin ax Tn (x)

f1 -1 -

n-i

i(-1)T JX(a), for odd n.

= , (.1)n/2.n(a), for even n.

=n tj n(a), for any n.

Thus we obtain folowing integral formulas for use.

-1
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sii ax -l() =Im{, n IEJn(a) I =i~Jn(a) IM[,i}
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Table 1: Eigenvalues

Mode 10 GHz 20 GHz 40 GHz
EHo  EHi EH2

1.10 3.00638 2.17164 2.23297

1.25 2.98567 2.12381 2.21197 Symmetrc

1.50 2.95200 2.09482 2.19654 J

Isolated 2.89586 2.06867 2.17533

1.50 2.83309 2.05419 2.15925 Antisyrnmetric
1.25 2.78686 2.01026 2.11995 f modes

1.10 2.75250 1.94495 2.05663
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Figure captions :

1. Figure 1: General system of N coupled microstrip lines.

2. Figure 2: Two identical thin coupled microstrip lines.

3. Figure 3: Dependence of propagation phase constant for EH system

modes of two coupled microstrip lines upon line spacing;

symmetric and antisymmetric system modes emerge from the

isolated ENo mode.

4. Figure 4: (a) Transverse currents; (b) axial currents for EH0 coupled

mode.

5. Figure 5: (a) Transverse currents; (b) axial currents for EH 1 coupled

mode.

6. Figure 6: (a) Transverse currents; (b) axial currents for EH 2 coupled

mode.
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o3.10-

c .3.00EH0 symmetric

C
o EH0 isolated

CJ' 2.90

(U

cL 2.80 EH0 antisymmetric

E .7 n,,=1.0, nf=.3.1.3
%- t/X0 =0.021 2
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Distance between coupled strips (b-w)/w

Figure 3. Dependence of propagation phase constant c for EH0 system modes
of two coupled microstrip lines upon line spacing; symmetric and
antisymmetric system modes emerge from the isolated EH0 mode.
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4.6 EM response of microstrip patch devices and antennas

A rigorous description for natural resonance modes of microstrip patch

devices in the MMIC environment, and the excitation of those modes, has been

completed [16] based upon an EFIE description of such devices immersed in a

layered dielectric/ferrimagnetic surround. Natural resonances arise from

simple-pole singularities in the temporal complex transform plane, and are

quantified as the non-trivial solutions to resulting homogeneous integral-

operator equations. Numerical quantification of those modes for a circular-

patch device is implemented [61 using Chebyshev series representations, appro-

priately modulated by square-root edge singularity factors, for the induced

current components. Complex natural frequencies of several resonance modes

and the associated natural-mode currents are obtained. A M.S. degree thesis

on this topic is presently in preparation.

An EFIE-based coupled-mode perturbation theory for the system-mode reson-

ant frequencies and relative current amplitudes describing an ensemble of

coupled microstrip antennas in the MMIC environment [16] has been generalized

to permit the presence of ferrimagnetic film layers. This perturbation ap-

proximation exploits natural-mode currents of isolated devices to obtain coup-

ling coefficients for system-mode currents as overlap integrals of the current

on one device with the resonant field of another.

Scientific paper [16] was included with Section 4.3, while paper [61 is

appended here.
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Research Paper No. [6]

INTEGRAL EQUATION FORMULATION FOR NATURAL MODES OF A CIRCULAR
PATCH ANTENNA IN A LAYERED ENVIRONMENT

Eric W. Blumbergs, Dennis P. Nyquist, and Paul F. Havala

Department of Electrical Engineering and Systems Science
Michigan State University, East Lansing, Michigan 48824

This paper investigates the natural resonant modes of a circu-
lar path device immersed in an integrated conductor, film, and
cover environment. A full two-dimensional EFIE description which
totally accounts for the layered environment is developed. This
development uses a polar coordinate Sommerfeld-integral representa-
tion of the dyadic Green's Function. The possibility of surface
waves of the layered background is also included.

The natural mode formulation is based on a pair of coupled
EFIE's. These equations are of the following form:

a k

eJne a'n (P')Kav(IP')dP' = -j 0 Ei(pe)
fnaa

n=-0 v=pe 0

for a=p,O where avn(P') are radially dependent Fouri r expansion
coefficients of surface currents on the patch, K(PiP') are.ker-
nels arising from the Hertzian potential Green s dyad, and E(p,e)
are components of the impressed field tangent to the patch surface.
Natural modes satisfy the homogeneous specialization of El(p,e)=O.

Orthogonality of the exp(jne) leads to independent systems of
homogeneous equations for each n. Numerical solutions for natural
frequencies and eigenfields are pursued by Galerkin's method. The
special case n=O leads to independent IE's for a and a.; corres-
ponding field components are coupled for higher-order modes. Rep-
resentative results are presented.
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4.7 Experimental measurement of EM interactions in MMIC's

A complete V-band mm-wave instrumentation setup has been acquired and

installed. Funds provided in the 10/1/87 to 12/31/88 reneral period allowed

the purchase of a required local oscillator for the harmonic-mixer detector

and MS-DOS PCB design software for use on the personal computer in MSU's new

millimeter-wave laboratory. Low-loss PCB microstrip circuits are being fabri-

cated to simulate the MMIC environment. Interactions between microstrip waves

and adjacent patch devices are being studied experimentally to quantify the

associated coupling and radiative scattering. The measured results provide

for validation of the analytically predicted scattering characteristics. Val-

idation of the coupled-mode perturbation theory for adjacent microstrip lines

will be accomplished through experimental measurements on PCB implementations

of such a coupled-line configuration.
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